scispace - formally typeset
Search or ask a question
Author

Yu-Hwai Tsai

Bio: Yu-Hwai Tsai is an academic researcher from University of Michigan. The author has contributed to research in topics: Induced pluripotent stem cell & Stem cell. The author has an hindex of 10, co-authored 34 publications receiving 878 citations.

Papers
More filters
Journal ArticleDOI
24 Mar 2015-eLife
TL;DR: It is shown that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HL Os are an excellent model to study human lung development, maturation and disease.
Abstract: Cell behavior has traditionally been studied in the lab in two-dimensional situations, where cells are grown in thin layers on cell-culture dishes. However, most cells in the body exist in a three-dimensional environment as part of complex tissues and organs, and so researchers have been attempting to re-create these environments in the lab. To date, several such ‘organoids’ have been successfully generated, including models of the human intestine, stomach, brain and liver. These organoids can mimic the responses of real tissues and can be used to investigate how organs form, change with disease, and how they might respond to potential therapies. Here, Dye et al. developed a new three-dimensional model of the human lung by coaxing human stem cells to become specific types of cells that then formed complex tissues in a petri dish. To make these lung organoids, Dye et al. manipulated several of the signaling pathways that control the formation of organs during the development of animal embryos. First, the stem cells were instructed to form a type of tissue called endoderm, which is found in early embryos and gives rise to the lung, liver and other several other internal organs. Then, Dye et al. activated two important developmental pathways that are known to make endoderm form three-dimensional intestinal tissue. However, by inhibiting two other key developmental pathways at the same time, the endoderm became tissue that resembles the early lung found in embryos instead. This early lung-like tissue formed three-dimensional spherical structures as it developed. The next challenge was to make these structures develop into lung tissue. Dye et al. worked out a method to do this, which involved exposing the cells to additional proteins that are involved in lung development. The resulting lung organoids survived in laboratory cultures for over 100 days and developed into well-organized structures that contain many of the types of cells found in the lung. Further analysis revealed the gene activity in the lung organoids resembles that of the lung of a developing human fetus, suggesting that lung organoids grown in the dish are not fully mature. Dye et al.'s findings provide a new approach for creating human lung organoids in culture that may open up new avenues for investigating lung development and diseases.

619 citations

Journal ArticleDOI
TL;DR: Alginate, a minimally supportive hydrogel with no inherent cell instructive properties, supports HIO growth in vitro and leads to HIO epithelial differentiation that is virtually indistinguishable from Matrigel-grown HIOs.
Abstract: Summary Human intestinal organoids (HIOs) represent a powerful system to study human development and are promising candidates for clinical translation as drug-screening tools or engineered tissue. Experimental control and clinical use of HIOs is limited by growth in expensive and poorly defined tumor-cell-derived extracellular matrices, prompting investigation of synthetic ECM-mimetics for HIO culture. Since HIOs possess an inner epithelium and outer mesenchyme, we hypothesized that adhesive cues provided by the matrix may be dispensable for HIO culture. Here, we demonstrate that alginate, a minimally supportive hydrogel with no inherent cell instructive properties, supports HIO growth in vitro and leads to HIO epithelial differentiation that is virtually indistinguishable from Matrigel-grown HIOs. In addition, alginate-grown HIOs mature to a similar degree as Matrigel-grown HIOs when transplanted in vivo, both resembling human fetal intestine. This work demonstrates that purely mechanical support from a simple-to-use and inexpensive hydrogel is sufficient to promote HIO survival and development.

139 citations

Journal ArticleDOI
TL;DR: This work used homogeneous human bud tip organoid cultures and identified SMAD signaling as a key regulator of the bud tip-to-airway transition and shed light on human airway differentiation in vitro and provides a single-cell atlas of the developing human lung.

101 citations

Journal ArticleDOI
TL;DR: This work uses single-cell mRNA sequencing with in situ validation approaches to interrogate human intestinal development from 7-21 weeks post conception, assigning molecular identities and spatial locations to cells and factors that comprise the niche.

83 citations

Journal ArticleDOI
TL;DR: HIOs can co-differentiate a native EC population that is properly patterned with an intestine-specific EC transcriptional signature in vitro, and it is found that HIO ECs grown in vitro share the highest similarity with native intestinal ECs relative to kidney and lung.

69 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
16 Jun 2016-Cell
TL;DR: 3D culture technology allow embryonic and adult mammalian stem cells to exhibit their remarkable self-organizing properties, and the resulting organoids reflect key structural and functional properties of organs such as kidney, lung, gut, brain and retina, and hold promise to predict drug response in a personalized fashion.

1,810 citations

Journal ArticleDOI
TL;DR: The in vitro organoid model facilitates an accurate study of a range of in vivo biological processes including tissue renewal, stem cell/niche functions and tissue responses to drugs, mutation or damage.
Abstract: The in vitro organoid model is a major technological breakthrough that has already been established as an essential tool in many basic biology and clinical applications. This near-physiological 3D model facilitates an accurate study of a range of in vivo biological processes including tissue renewal, stem cell/niche functions and tissue responses to drugs, mutation or damage. In this Review, we discuss the current achievements, challenges and potential applications of this technique.

1,015 citations

Journal ArticleDOI
TL;DR: The progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine are discussed, and the remaining challenges and the emerging opportunities in the field are considered.
Abstract: Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. This article discusses progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, including the powerful combination of human iPSC technology with recent developments in gene editing.

985 citations

Journal ArticleDOI
TL;DR: The applications, advantages and disadvantages of human organoids as models of development and disease and the challenges that have to be overcome for organoids to be able to substantially reduce the need for animal experiments are discussed.
Abstract: The historical reliance of biological research on the use of animal models has sometimes made it challenging to address questions that are specific to the understanding of human biology and disease. But with the advent of human organoids - which are stem cell-derived 3D culture systems - it is now possible to re-create the architecture and physiology of human organs in remarkable detail. Human organoids provide unique opportunities for the study of human disease and complement animal models. Human organoids have been used to study infectious diseases, genetic disorders and cancers through the genetic engineering of human stem cells, as well as directly when organoids are generated from patient biopsy samples. This Review discusses the applications, advantages and disadvantages of human organoids as models of development and disease and outlines the challenges that have to be overcome for organoids to be able to substantially reduce the need for animal experiments.

877 citations