scispace - formally typeset
Search or ask a question
Author

Yu Jeong Lee

Bio: Yu Jeong Lee is an academic researcher from Yonsei University. The author has contributed to research in topics: Polymer solar cell & Photoactive layer. The author has an hindex of 3, co-authored 3 publications receiving 191 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A stretchable polymer channel layer for organic field-effect transistors is obtained by spin-coating a blend solution of polythiophene and rubber polymer with large stretchability of the polythyphene film layer.
Abstract: A stretchable polymer channel layer for organic field-effect transistors is obtained by spin-coating a blend solution of polythiophene and rubber polymer. A network of the polythiophene nanofibril bundles surface-embedded in the rubber matrix allows large stretchability of the polythiophene film layer.

151 citations

Journal ArticleDOI
TL;DR: In this paper, the authors applied a C&H process with a P3HT/PCBM m-xylene solution to generate P3H:PCBM nanofibril composite films and found that the hole transport was 2.6 times faster in the thickness direction and 6.5 times more conductive in the in-plane direction.
Abstract: Applying conventional printing technologies to fabricate large-area flexible bulk heterojunction (BHJ) solar cells is of great interest. Achieving this task requires (i) large tolerance of the maximum photoconversion efficiency (PCE) to the film thickness, (ii) fast hole transport in both the thickness and lateral directions of the BHJ layer, and (iii) improved stability against bending and heat. This paper demonstrates that a P3HT:PCBM BHJ layer made of long P3HT nanofibrils of almost 100% crystallinity can be an excellent approach to achieve large-area printed solar cells. We applied a cool-and-heat (C&H) process with a P3HT/PCBM m-xylene solution to generate P3HT:PCBM nanofibril composite films. We found that the hole transport of the nanofibril composite was 2.6 times faster in the thickness direction and 6.5 times more conductive in the in-plane direction compared with conventionally annealed composites. The fast hole transport in the thickness direction led to negligible dependence of the PCE on the...

39 citations

Journal ArticleDOI
TL;DR: Investigating the photo-oxidation behavior of a bulk-heterojunction (BHJ) photoactive film made of single-crystalline poly(3-hexlythiophene) (P3HT) nanofibrils and fullerene derivatives showed significantly enhanced air stability under sunlight, whereas the PCE of the conventional BHJ solar cell decreased to 20% of its initial PCE under the same experimental conditions.
Abstract: In spite of the rapid increase in the power conversion efficiency (PCE) of polymer solar cells (PSCs), the poor stability of the photoactive layer in air under sunlight is a critical problem blocking commercialization of PSCs. This study investigates the photo-oxidation behavior of a bulk-heterojunction (BHJ) photoactive film made of single-crystalline poly(3-hexlythiophene) (P3HT) nanofibrils and fullerene derivatives [phenyl-C61-butyric methyl ester (PCBM), indene-C 60 bisadduct (ICBA)]. Because the single-crystalline P3HT nanofibrils had tightly packed π–π stacking, the permeation of oxygen and water into the nanofibrils was significantly reduced. Chemical changes in P3HT were not apparent in the nanofibrils, and hence the air stability of the nanofibril-based BHJ film was considerably enhanced as compared with conventional BHJ films. The chemical changes were monitored by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and UV–vis absorbance. Inverted PSCs made of the nanofibril-ba...

33 citations


Cited by
More filters
Journal ArticleDOI
17 Nov 2016-Nature
TL;DR: A design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers that is able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities is presented.
Abstract: Introducing non-covalent crosslinking moieties to polymer semiconductors produces a stretchable and healable material suitable for wearable electronics. There is great interest and potential in the development of skin-inspired flexible and wearable electronic devices. Such devices require materials that twist, fold and bend with no loss in electronic—or material—properties. Zhenan Bao and colleagues report a conjugated polymer that also incorporates non-covalent interactions between adjacent chains, enabling the material to accommodate up to 100% strain whilst maintaining high charge-carrier mobility. In this proof-of-principle study the authors use the polymers to fabricate flexible and stretchable organic transistors that combine robustness with good electronic properties. Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics1,2. All of the materials and components of such transistors need to be stretchable and mechanically robust3,4. Although there has been recent progress towards stretchable conductors5,6,7,8, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers9,10,11. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods12. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks13,14. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

939 citations

Journal ArticleDOI
TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Abstract: Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.

881 citations

Journal ArticleDOI
06 Jan 2017-Science
TL;DR: The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain, and the fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon.
Abstract: Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.

796 citations

Journal ArticleDOI
TL;DR: The factors limiting the stability of OSCs are summarized, such as metastable morphology, diffusion of electrodes and buffer layers, oxygen and water, irradiation, heating and mechanical stress, and recent progress in strategies to increase the stability are surveyed.
Abstract: Organic solar cells (OSCs) present some advantages, such as simple preparation, light weight, low cost and large-area flexible fabrication, and have attracted much attention in recent years. Although the power conversion efficiencies have exceeded 10%, the inferior device stability still remains a great challenge. In this review, we summarize the factors limiting the stability of OSCs, such as metastable morphology, diffusion of electrodes and buffer layers, oxygen and water, irradiation, heating and mechanical stress, and survey recent progress in strategies to increase the stability of OSCs, such as material design, device engineering of active layers, employing inverted geometry, optimizing buffer layers, using stable electrodes and encapsulation. Some research areas of device stability that may deserve further attention are also discussed to help readers understand the challenges and opportunities in achieving high efficiency and high stability of OSCs towards future industrial manufacture.

743 citations

Journal ArticleDOI
TL;DR: The proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester as the electron acceptor and exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices.
Abstract: All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

701 citations