scispace - formally typeset
Search or ask a question
Author

Yu Jian Cheng

Other affiliations: National University of Singapore, Huawei, Southeast University  ...read more
Bio: Yu Jian Cheng is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Antenna (radio) & Dipole antenna. The author has an hindex of 37, co-authored 211 publications receiving 4321 citations. Previous affiliations of Yu Jian Cheng include National University of Singapore & Huawei.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.

737 citations

Journal ArticleDOI
TL;DR: In this article, two types of substrate integrated waveguide (SIW) long slot leaky-wave antennas with controllable sidelobe level are proposed and demonstrated and demonstrated.
Abstract: Two types of substrate integrated waveguide (SIW) long slot leaky-wave antennas with controllable sidelobe level are proposed and demonstrated in this paper. The first prototype is able to achieve an excellent sidelobe level of -27.7ndB by properly meandering a long slot etched on the broadside of a straight SIW section from the centerline toward the sidewall then back. But it is known that an asymmetrically curved slot would worsen the cross-polar level. To overcome this drawback, a modified leaky-wave antenna is proposed, which has a straight long slot etched on the broadside of a meandering SIW section. It yields an outstanding sidelobe level of -29.3 dB and also improves the cross-polar level by more than 11 dB at 35 GHz. Experimental results agree well with simulations, thus validating our design. Then, a two-dimensional (2-D) multibeam antenna is developed by combining such 14 leaky-wave antennas with an SIW beamforming network (BFN). It has features of scanning both in elevation orientation by varying frequency and in cross-plane direction by using the BFN. Excited at ports 1-10 of such a 2-D multibeam antenna at 35 GHz, angular region of 86.6° in azimuth can effectively be covered by 3 dB beam-width of ten pencil beams. Varying frequency from 33 GHz to 37 GHz, the angular region of 37.5° and 38.9° in elevation can be covered by 3 dB beam-width of those continuous scanning beams excited at ports 6 and 8 respectively.

229 citations

Journal ArticleDOI
TL;DR: In this paper, a planar W-band monopulse antenna array based on the substrate integrated waveguide (SIW) technology is designed, where the sum-difference comparator, 16-way divider and 32 × 32 slot array antenna are all integrated on a single dielectric substrate in the compact layout through the low-cost PCB process.
Abstract: A planar W-band monopulse antenna array is designed based on the substrate integrated waveguide (SIW) technology The sum-difference comparator, 16-way divider and 32 × 32 slot array antenna are all integrated on a single dielectric substrate in the compact layout through the low-cost PCB process Such a substrate integrated monopulse array is able to operate over 93 ~ 96 GHz with narrow-beam and high-gain The maximal gain is measured to be 258 dBi, while the maximal null-depth is measured to be - 437 dB This SIW monopulse antenna not only has advantages of low-cost, light, easy-fabrication, etc, but also has good performance validated by measurements It presents an excellent candidate for W-band directional-finding systems

213 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a 32 $\,\times\,$ 32 high-gain patch array antenna fed by the substrate integrated waveguide (SIW) structure at W-band.
Abstract: This communication presents a 32 $\,\times\,$ 32 high-gain patch array antenna fed by the substrate integrated waveguide (SIW) structure at W-band. The array antenna consists of two layers to achieve a compact topology, which allows for mass production using a standard PCB fabrication process. The wideband feeding network is placed in the bottom layer while the radiating patches are on the top layer. This configuration also resolves the trade-off between gain and bandwidth of conventional SIW array antennas. Measured gain of the 32 $\,\times\,$ 32 antenna array is within the range 28.81–29.97 dBi in the working bandwidth of 91–97 GHz. Measured impedance bandwidth covers the same frequency band for $\vert {\rm S} _{11} \vert . The cross-polarization of the antenna array is less than 40 dB at the beam direction. Good agreement between the simulated and measured results validates our design.

178 citations

Journal ArticleDOI
24 May 2012
TL;DR: Millimeter-wave and terahertz antenna technologies are overviewed including the conventional and nonconventional planar/nonplanar antenna structures based on different platforms with respect to theoretical and experimental results in connection with electrical and mechanical performances.
Abstract: Significant advances in the development of millimeter-wave and terahertz (30-10 000 GHz) technologies have been made to cope with the increasing interest in this still not fully explored electromagnetic spectrum. The nature of electromagnetic waves over this frequency range is well suited for the development of high-resolution imaging applications, molecular-sensitive spectroscopic devices, and ultrabroadband wireless communications. In this paper, millimeter-wave and terahertz antenna technologies are overviewed including the conventional and nonconventional planar/nonplanar antenna structures based on different platforms. As a promising technological platform, substrate-integrated circuits (SICs) attract more and more attention. Various substrate-integrated waveguide (SIW) schemes and other synthesized guide techniques have been widely employed in the design of antennas and arrays. Different types of substrate-integrated antennas and beamforming networks are discussed with respect to theoretical and experimental results in connection with electrical and mechanical performances.

160 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.

1,129 citations

Journal ArticleDOI
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.

737 citations

01 Jan 2016

733 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive mIMO and intelligent reflecting surfaces.
Abstract: Multiple antenna technologies have attracted much research interest for several decades and have gradually made their way into mainstream communication systems. Two main benefits are adaptive beamforming gains and spatial multiplexing, leading to high data rates per user and per cell, especially when large antenna arrays are adopted. Since multiple antenna technology has become a key component of the fifth-generation (5G) networks, it is time for the research community to look for new multiple antenna technologies to meet the immensely higher data rate, reliability, and traffic demands in the beyond 5G era. Radically new approaches are required to achieve orders-of-magnitude improvements in these metrics. There will be large technical challenges, many of which are yet to be identified. In this paper, we survey three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive MIMO, and intelligent reflecting surfaces. For each of these technologies, we present the fundamental motivation, key characteristics, recent technical progresses, and provide our perspectives for future research directions. The paper is not meant to be a survey/tutorial of a mature subject, but rather serve as a catalyst to encourage more research and experiments in these multiple antenna technologies.

430 citations

Journal ArticleDOI
TL;DR: In this article, a uniform slotted SIW leaky-wave antenna is designed that has good beam scanning from near broadside (though not exactly at broadside) to forward endfire.
Abstract: A novel slotted substrate integrated waveguide (SIW) leaky-wave antenna is proposed. This antenna works in the TE10 mode of the SIW. Leakage is obtained by introducing a periodic set of transverse slots on the top of the SIW, which interrupt the current flow on the top wall. It is seen that three modes (a leaky mode, a proper waveguide mode, and a surface-wave-like mode) can all propagate on this structure. The wavenumbers of the modes are calculated theoretically and are numerically evaluated by HFSS simulation. The leakage loss, dielectric loss, and conductor loss are also analyzed. A uniform slotted SIW leaky-wave antenna is designed that has good beam scanning from near broadside (though not exactly at broadside) to forward endfire. This type of SIW leaky-wave antenna has a wide impedance bandwidth and a narrow beam that scans with frequency. Measured results are consistent with the simulation and the theoretical analysis.

405 citations