scispace - formally typeset
Search or ask a question
Author

Yu-Keung Mok

Bio: Yu-Keung Mok is an academic researcher from National University of Singapore. The author has contributed to research in topics: Edwardsiella tarda & Aedes aegypti. The author has an hindex of 29, co-authored 57 publications receiving 2270 citations. Previous affiliations of Yu-Keung Mok include Hong Kong University of Science and Technology & University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: Interactions between virulence factors that include type III and type VI secretion systems, quorum sensing, two-component systems, and exoenzymes will lead to the development of novel antimicrobials against E. tarda and other enterics.

166 citations

Journal ArticleDOI
TL;DR: These results provide the first strong NOE-based evidence for compact unfolded states of proteins and suggest that some unfolded states under physiological conditions have specific interactions leading to compact structures.

154 citations

Journal ArticleDOI
TL;DR: Methyl dynamics measured at 14 and 30 degrees C establish that the amplitudes of side-chain motions in the folded SH3 domain are more sensitive to changes in temperature than the backbone dynamics, suggesting that over this temperature range side- chain ps to ns time-scale motions contribute more to the heat capacity than backbone motions for this protein.

136 citations

Journal ArticleDOI
TL;DR: The experimental results presented in this study suggest that Tctex-1 is likely to be a specific cargo adaptor for the dynein motor complex.

122 citations

Journal ArticleDOI
TL;DR: The experimental data suggest that nNOS PDZ and the second PDZ domain of PSD-95 form a "head-to-tail" dimer similar to the nN OS/syntrophin complex characterized by X-ray crystallography.

120 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The recent confirmation that there is at least one world rich in organic molecules on which rivers and perhaps shallow seas or bogs are filled with nonaqueous fluidsthe liquid hydrocarbons of Titan now bring some focus, even urgency, to the question of whether water is indeed a matrix of life.
Abstract: When Szent-Gyorgyi called water the “matrix of life”,1 he was echoing an old sentiment. Paracelsus in the 16th century said that “water was the matrix of the world and of all its creatures.”2 But Paracelsus’s notion of a matrixsan active substance imbued with fecund, life-giving propertiess was quite different from the picture that, until very recently, molecular biologists have tended to hold of water’s role in the chemistry of life. Although acknowledging that liquid water has some unusual and important physical and chemical propertiessits potency as a solvent, its ability to form hydrogen bonds, its amphoteric naturesbiologists have regarded it essentially as the backdrop on which life’s molecular components are arrayed. It used to be common practice, for example, to perform computer simulations of biomolecules in a vacuum. Partly this was because the computational intensity of simulating a polypeptide chain was challenging even without accounting for solvent molecules too, but it also reflected the prevailing notion that water does little more than temper or moderate the basic physicochemical interactions responsible for molecular biology. What Gerstein and Levitt said 9 years ago remains true today: “When scientists publish models of biological molecules in journals, they usually draw their models in bright colors and place them against a plain, black background”.3 Curiously, this neglect of water as an active component of the cell went hand in hand with the assumption that life could not exist without it. That was basically an empirical conclusion derived from our experience of life on Earth: environments without liquid water cannot sustain life, and special strategies are needed to cope with situations in which, because of extremes of either heat or cold, the liquid is scarce.4-6 The recent confirmation that there is at least one world rich in organic molecules on which rivers and perhaps shallow seas or bogs are filled with nonaqueous fluidsthe liquid hydrocarbons of Titan7smight now bring some focus, even urgency, to the question of whether water is indeed a * E-mail: p.ball@nature.com. Philip Ball is a science writer and a consultant editor for Nature, where he worked as an editor for physical sciences for more than 10 years. He holds a Ph.D. in physics from the University of Bristol, where he worked on the statistical mechanics of phase transitions in the liquid state. His book H2O: A Biography of Water (Weidenfeld & Nicolson, 1999) was a survey of the current state of knowledge about the behavior of water in situations ranging from planetary geomorphology to cell biology. He frequently writes about aspects of water science for both the popular and the technical media.

1,798 citations

Journal ArticleDOI
30 Jun 2011-Nature
TL;DR: It is demonstrated that SAMHD1 is an antiretroviral protein expressed in cells of the myeloid lineage that inhibits an early step of the viral life cycle, and is probably required for HIV-1 restriction.
Abstract: The primate lentivirus auxiliary protein Vpx counteracts an unknown restriction factor that renders human dendritic and myeloid cells largely refractory to HIV-1 infection. Here we identify SAMHD1 as this restriction factor. SAMHD1 is a protein involved in Aicardi-Goutieres syndrome, a genetic encephalopathy with symptoms mimicking congenital viral infection, that has been proposed to act as a negative regulator of the interferon response. We show that Vpx induces proteasomal degradation of SAMHD1. Silencing of SAMHD1 in non-permissive cell lines alleviates HIV-1 restriction and is associated with a significant accumulation of viral DNA in infected cells. Concurrently, overexpression of SAMHD1 in sensitive cells inhibits HIV-1 infection. The putative phosphohydrolase activity of SAMHD1 is probably required for HIV-1 restriction. Vpx-mediated relief of restriction is abolished in SAMHD1-negative cells. Finally, silencing of SAMHD1 markedly increases the susceptibility of monocytic-derived dendritic cells to infection. Our results demonstrate that SAMHD1 is an antiretroviral protein expressed in cells of the myeloid lineage that inhibits an early step of the viral life cycle.

1,347 citations

Journal Article
TL;DR: The highly automated PHENIX AutoBuild wizard is described, which can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods.
Abstract: Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard Thomas C. Terwilliger a* , Ralf W. Grosse-Kunstleve b , Pavel V. Afonine b , Nigel W. Moriarty b , Peter Zwart b , Li-Wei Hung a , Randy J. Read c , Paul D. Adams b* a b Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA Lawrence Berkeley National Laboratory, One Cyclotron Road, Bldg 64R0121, Berkeley, CA 94720, USA. c Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK. * Email: terwill@lanl.gov or PDAdams@lbl.gov Running title: The PHENIX AutoBuild Wizard Abstract The PHENIX AutoBuild Wizard is a highly automated tool for iterative model- building, structure refinement and density modification using RESOLVE or TEXTAL model- building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 A to 3.2 A, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution. Keywords: Model building; model completion; macromolecular models; Protein Data Bank; structure refinement; PHENIX Introduction Iterative model-building and refinement is a powerful approach to obtaining a complete and accurate macromolecular model. The approach consists of cycles of building an atomic model based on an electron density map for a macromolecular structure, refining the structure, using the refined structure as a basis for improving the map, and building a new model. This type of approach has been carried out in a semi-automated fashion for many years, with manual model-building iterating with automated refinement (Jensen, 1997). More recently, with the development first of ARP/wARP (Perrakis et al., 1999), and later other procedures including RESOLVE iterative model-building and refinement (Terwilliger,

1,161 citations

Journal ArticleDOI
TL;DR: Although collagen-secreting myofibroblasts once were thought of as the master "producers" of fibrosis, this review will illustrate how macrophages function as the Master "regulators" of Fibrosis.
Abstract: Macrophages are found in close proximity with collagen-producing myofibroblasts and indisputably play a key role in fibrosis. They produce profibrotic mediators that directly activate fibroblasts, including transforming growth factor-β1 and platelet-derived growth factor, and control extracellular matrix turnover by regulating the balance of various matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Macrophages also regulate fibrogenesis by secreting chemokines that recruit fibroblasts and other inflammatory cells. With their potential to act in both a pro- and antifibrotic capacity, as well as their ability to regulate the activation of resident and recruited myofibroblasts, macrophages and the factors they express are integrated into all stages of the fibrotic process. These various, and sometimes opposing, functions may be performed by distinct macrophage subpopulations, the identification of which is a growing focus of fibrosis research. Although collagen-secreting myofibroblasts once were thought of as the master “producers” of fibrosis, this review will illustrate how macrophages function as the master “regulators” of fibrosis.

1,129 citations