scispace - formally typeset
Search or ask a question
Author

Yu Qing Yao

Bio: Yu Qing Yao is an academic researcher from Guizhou University. The author has contributed to research in topics: Supramolecular chemistry & Supramolecular assembly. The author has an hindex of 2, co-authored 2 publications receiving 29 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review provides an overview of related advances and achievements involving such a combination of Q[n]-based host-guest chemistry and Q[ n]-based coordination chemistry.
Abstract: Cucurbit[n]urils (Q[n]s), a relatively new class of macrocyclic hosts with a rigid hydrophobic cavity and two identical carbonyl-fringed portals, have attracted much attention since the first member of the Q[n]-family, cucurbit[6]uril (Q[6]), was structurally identified in 1981 by Mock and co-workers. The interactions of the rigid cavities and negative portals of Q[n]s have resulted in the development of two almost mutually exclusive areas of study, namely Q[n]-based host–guest chemistry and Q[n]-based coordination chemistry. However, researches has revealed that Q[n]-based host–guest inclusion interactions may be influenced by metal ion coordination at the Q[n] portals, and in turn, coordination of metal ions at the Q[n] portals could be promoted by the formation of Q[n]-based inclusion host–guest complexes. Thus, this review provides an overview of related advances and achievements involving such a combination of Q[n]-based host–guest chemistry and Q[n]-based coordination chemistry, which could become an emerging branch, that is, Q[n]-based host–guest-metal ion chemistry. In particular, it could be useful in the treatment of wastewater, kinetic studies, drug delivery, the construction of novel supramolecular frameworks, metal-catalyzed reactions, recognition or response to metal cations, and so on.

22 citations

Journal ArticleDOI
20 Jun 2018
TL;DR: The Q[7]/SC[4]A-based supramolecular assembly can accommodate molecules of some volatile compounds or luminescent dyes and offers a simple and highly efficient means of preparing adsorbent or solid fluorescent materials.
Abstract: Upon mixing of aqueous solutions of the freely soluble building blocks cucurbit[7]uril (Q[7]) and 4-sulfocalix[4]arene (SC[4]A), white microcrystals instantly separate in near-quantitative yield. The driving force for this assembly is suggested to be the outer-surface interaction of the Q[n]. Dynamic light scattering, scanning electron microscopy, and NMR (diffusion-ordered NMR spectroscopy) analyses have confirmed the supramolecular aggregation of Q[7] and SC[4]A. Titration 1H NMR spectroscopy and isothermal titration calorimetry have shown that the interaction ratio of Q[7] and SC[4]A is close to 3:1. Moreover, the Q[7]/SC[4]A-based supramolecular assembly can accommodate molecules of some volatile compounds or luminescent dyes. Thus, this work offers a simple and highly efficient means of preparing adsorbent or solid fluorescent materials.

15 citations


Cited by
More filters
01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: A comprehensive exposition concerning in vivo-tested CD and CD-based delivery systems for anticancer therapy is undertaken, and the authors address the multivalent functionalities of CD- based delivery systems, namely the incorporation of active target ligands, stimuli-responsiveness components, surface functionalization, or further associations with other delivery systems aiming at improved in vivo anticancer therapies.
Abstract: Cyclodextrins (CDs) are naturally occurring macromolecules widely used as excipients on pharmaceutical formulations, evidencing a large spectrum of applications in the pharmaceutical industry. Their unique ability to act as molecular containers by entrapping a wide range of guest molecules in their internal cavity makes them a remarkable excipient to improve drug apparent solubility, stability, and bioavailability, and a valuable tool for the assembly of new drug delivery systems. These features are especially useful when it comes to chemotherapy, as most of the anticancer drugs present both low permeability and reduced water solubility. Therefore, guest-host inclusion complexes offer several potential advantages not only regarding the improvement of pharmaceutical formulations characteristics but also considering the reduction of drug toxic side effects. The combination of CDs with additional technologies and materials constitutes a potential strategy towards the development of advanced and multifunctional CD-based delivery systems. Paclitaxel, curcumin, camptothecin, doxorubicin, and cisplatin are among the most studied molecules with anticancer activities and have been successfully incorporated in such nanosystems. Exciting results using CDs and CD-based delivery systems have been obtained so far, paving the way towards the attainment of intelligent delivery systems to possibly address cancer therapeutics' unmet needs. In this review, a comprehensive exposition concerning in vivo-tested CD and CD-based delivery systems for anticancer therapy is undertaken. Additionally, the authors address the multivalent functionalities of CD-based delivery systems, namely the incorporation of active target ligands, stimuli-responsiveness components, surface functionalization, or further associations with other delivery systems, aiming at improved in vivo anticancer therapies. Graphical abstract.

37 citations

Journal ArticleDOI
TL;DR: The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stopped‐flow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail.
Abstract: The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stoppedflow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail. Two contrasting mechanisms were identified: The symmetric dicationic 2,7- dimethyldiazapyrenium shows a cation-independent complex dissociation mechanism coupled to deceleration of the ingression in the presence of alkali and alkaline earth cations (M$^{+n}$) due to competitive formation of CB7–M$^{+n}$ complexes. A much richer, unprecedented kinetic behaviour was observed for the ingression and egression of the monocationic and non-symmetric berberine (B$^{+}$). The formation of ternary complex B+–CB7–M$^{+n}$ was unambiguously revealed. A difference of more than two orders of magnitude was found in the equilibrium constants of Mn+ binding to B$^{+}$–CB7 inclusion complex. Large cations, such as K$^{+}$ and Ba$^{2+}$, also promoted B$^{+}$ expulsion from the ternary complex in a bimolecular process. This study reveals a previously hidden mechanistic picture and motivates systematic kinetic investigations of other host–guest systems.

24 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the various supramolecular organic frameworks assembled via OSIQs, which can be classified as being assembled by self-induced OSIQ, anion induced OSIQ and aromatic OSIQ.
Abstract: Porous materials, especially metal-organic frameworks, covalent organic frameworks, and supramolecular organic frameworks, are widely used in heterogeneous catalysis, adsorption, and ion exchange. Cucurbit[n]urils (Q[n]s) suitable building units for porous materials because they possess cavities with neutral electrostatic potential, portal carbonyls with negative electrostatic potential, and outer surfaces with positive electrostatic potential, which may result in the formation of Q[n]-based supramolecular frameworks (QSFs) assembled through the interaction of guests within Q[n]s, the coordination of Q[n]s with metal ions, and outer-surface interaction of Q[n]s (OSIQ). This review summarizes the various QSFs assembled via OSIQs. The QSFs can be classified as being assembled by 1) self-induced OSIQ, 2) anion-induced OSIQ, and 3) aromatic-induced OSIQ. The design and construction of QSFs with novel structures and specific functional properties may establish a new research direction in Q[n] chemistry.

24 citations