Author
Yu Shi
Bio: Yu Shi is an academic researcher. The author has contributed to research in topics: Computer science & Artificial intelligence. The author has an hindex of 4, co-authored 4 publications receiving 39 citations.
Papers
More filters
TL;DR: Experimental results demonstrate that the proposed multimodal MRI volumetric data fusion method based on an end-to-end convolutional neural network can obtain more competitive results on both visual quality and objective assessment when compared with some representative 3-D and 2-D medical image fusion methods.
Abstract: Medical image fusion aims to integrate the complementary information captured by images of different modalities into a more informative composite image. However, current study on medical image fusion suffers from several drawbacks: 1) existing methods are mostly designed for 2-D slice fusion, and they tend to lose spatial contextual information when fusing medical images with volumetric structure slice by slice individually; 2) the few existing 3-D medical image fusion methods fail in considering the characteristics of source modalities sufficiently, leading to the loss of important modality information; and 3) most existing works concentrate on pursuing good performance on visual perception and objective evaluation, while there is a severe lack of clinical problem-oriented study. In this article, to address these issues, we propose a multimodal MRI volumetric data fusion method based on an end-to-end convolutional neural network (CNN). In our network, an attention-based multimodal feature fusion (MMFF) module is presented for more effective feature learning. In addition, a specific loss function that considers the characteristics of different MRI modalities is designed to preserve the modality information. Experimental results demonstrate that the proposed method can obtain more competitive results on both visual quality and objective assessment when compared with some representative 3-D and 2-D medical image fusion methods. We further verify the significance of the proposed method for brain tumor segmentation by enriching the input modalities, and the results show that it is helpful to improve the segmentation accuracy. The source code of our fusion method is available at https://github.com/yuliu316316/3D-CNN-Fusion.
14 citations
TL;DR: Wang et al. as discussed by the authors proposed a glioma segmentation-oriented multi-modal magnetic resonance (MR) image fusion method using an adversarial learning framework, which adopts a segmentation network as the discriminator to achieve more meaningful fusion results.
Abstract: Dear Editor, In recent years, multi-modal medical image fusion has received widespread attention in the image processing community. However, existing works on medical image fusion methods are mostly devoted to pursuing high performance on visual perception and objective fusion metrics, while ignoring the specific purpose in clinical applications. In this letter, we propose a glioma segmentation-oriented multi-modal magnetic resonance (MR) image fusion method using an adversarial learning framework, which adopts a segmentation network as the discriminator to achieve more meaningful fusion results from the perspective of the segmentation task. Experimental results demonstrate the advantage of the proposed method over some state-of-the-art medical image fusion methods.
12 citations
TL;DR: Experimental results on the BraTS 2020 benchmark demonstrate that the proposed multi-task model named SF-Net can achieve higher segmentation accuracy than the VAE-based approach, and the image fusion results obtained are of high quality on the brain tumor regions.
Abstract: Automatic segmentation of brain tumor regions from multimodal MRI scans is of great clinical significance. In this letter, we propose a “Segmentation-Fusion” multi-task model named SF-Net for brain tumor segmentation. In comparison to the widely-used multi-task model that adds a variational autoencoder (VAE) decoder to reconstruct the input data, using image fusion as an additional regularization for feature learning helps to achieve more sufficient fusion of multimodal features, which is beneficial to the multimodal image segmentation problem. To further improve the performance of the multi-task model, an uncertainty-based approach that can adaptively adjust the loss weights of different tasks during the training process is introduced for model training. Experimental results on the BraTS 2020 benchmark demonstrate that the proposed method can achieve higher segmentation accuracy than the VAE-based approach. In addition, as the by-product of the multi-task model, the image fusion results obtained are of high quality on the brain tumor regions. The source code of the proposed method is available at https://github.com/yuliu316316/SF-Net.
7 citations
TL;DR: The results demonstrate that the proposed components on both pixel-level and feature-level fusion can effectively improve the segmentation accuracy of brain tumors.
Abstract: Brain tumor segmentation in multimodal MRI volumes is of great significance to disease diagnosis, treatment planning, survival prediction and other relevant tasks. However, most existing brain tumor segmentation methods fail to make sufficient use of multimodal information. The most common way is to simply stack the original multimodal images or their low-level features as the model input, and many methods treat each modality data with equal importance to a given segmentation target. In this paper, we introduce multimodal image fusion technique including both pixel-level fusion and feature-level fusion for brain tumor segmentation, aiming to achieve more sufficient and finer utilization of multimodal information. At the pixel level, we present a convolutional network named PIF-Net for 3D MR image fusion to enrich the input modalities of the segmentation model. The fused modalities can strengthen the association among different types of pathological information captured by multiple source modalities, leading to a modality enhancement effect. At the feature level, we design an attention-based modality selection feature fusion (MSFF) module for multimodal feature refinement to address the difference among multiple modalities for a given segmentation target. A two-stage brain tumor segmentation framework is accordingly proposed based on the above components and the popular V-Net model. Experiments are conducted on the BraTS 2019 and BraTS 2020 benchmarks. The results demonstrate that the proposed components on both pixel-level and feature-level fusion can effectively improve the segmentation accuracy of brain tumors.
6 citations
Cited by
More filters
TL;DR: Zhang et al. as mentioned in this paper proposed a brain tumor segmentation method based on the fusion of deep semantics and edge information in multimodal MRI, aiming to achieve a more sufficient utilization of multi-modal information for accurate segmentation.
Abstract: Brain tumor segmentation in multimodal MRI has great significance in clinical diagnosis and treatment. The utilization of multimodal information plays a crucial role in brain tumor segmentation. However, most existing methods focus on the extraction and selection of deep semantic features, while ignoring some features with specific meaning and importance to the segmentation problem. In this paper, we propose a brain tumor segmentation method based on the fusion of deep semantics and edge information in multimodal MRI, aiming to achieve a more sufficient utilization of multimodal information for accurate segmentation. The proposed method mainly consists of a semantic segmentation module, an edge detection module and a feature fusion module. In the semantic segmentation module, the Swin Transformer is adopted to extract semantic features and a shifted patch tokenization strategy is introduced for better training. The edge detection module is designed based on convolutional neural networks (CNNs) and an edge spatial attention block (ESAB) is presented for feature enhancement. The feature fusion module aims to fuse the extracted semantic and edge features, and we design a multi-feature inference block (MFIB) based on graph convolution to perform feature reasoning and information dissemination for effective feature fusion. The proposed method is validated on the popular BraTS benchmarks. The experimental results verify that the proposed method outperforms a number of state-of-the-art brain tumor segmentation methods. The source code of the proposed method is available at https://github.com/HXY-99/brats.
71 citations
TL;DR: Tang et al. as discussed by the authors proposed a novel image registration and fusion method, named SuperFusion, which combines image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework.
Abstract: Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to strictly aligned source images and cause severe artifacts in the fusion results when input images have slight shifts or deformations. In addition, the fusion results typically only have good visual effect, but neglect the semantic requirements of high-level vision tasks. This study incorporates image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework and proposes a novel image registration and fusion method, named SuperFusion. Specifically, we design a registration network to estimate bidirectional deformation fields to rectify geometric distortions of input images under the supervision of both photometric and end-point constraints. The registration and fusion are combined in a symmetric scheme, in which while mutual promotion can be achieved by optimizing the naive fusion loss, it is further enhanced by the mono-modal consistent constraint on symmetric fusion outputs. In addition, the image fusion network is equipped with the global spatial attention mechanism to achieve adaptive feature integration. Moreover, the semantic constraint based on the pre-trained segmentation model and Lovasz-Softmax loss is deployed to guide the fusion network to focus more on the semantic requirements of high-level vision tasks. Extensive experiments on image registration, image fusion, and semantic segmentation tasks demonstrate the superiority of our SuperFusion compared to the state-of-the-art alternatives. The source code and pre-trained model are publicly available at https://github.com/Linfeng-Tang/SuperFusion.
50 citations
TL;DR: Tang et al. as discussed by the authors proposed a novel image registration and fusion method, named SuperFusion, which combines image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework.
Abstract: Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to strictly aligned source images and cause severe artifacts in the fusion results when input images have slight shifts or deformations. In addition, the fusion results typically only have good visual effect, but neglect the semantic requirements of high-level vision tasks. This study incorporates image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework and proposes a novel image registration and fusion method, named SuperFusion. Specifically, we design a registration network to estimate bidirectional deformation fields to rectify geometric distortions of input images under the supervision of both photometric and end-point constraints. The registration and fusion are combined in a symmetric scheme, in which while mutual promotion can be achieved by optimizing the naive fusion loss, it is further enhanced by the mono-modal consistent constraint on symmetric fusion outputs. In addition, the image fusion network is equipped with the global spatial attention mechanism to achieve adaptive feature integration. Moreover, the semantic constraint based on the pre-trained segmentation model and Lovasz-Softmax loss is deployed to guide the fusion network to focus more on the semantic requirements of high-level vision tasks. Extensive experiments on image registration, image fusion, and semantic segmentation tasks demonstrate the superiority of our SuperFusion compared to the state-of-the-art alternatives. The source code and pre-trained model are publicly available at https://github.com/Linfeng-Tang/SuperFusion.
45 citations
TL;DR: In this article , the authors present a comprehensive review of brain disease detection from the fusion of neuroimaging modalities using DL models like convolutional neural networks, recurrent neural networks (RNNs), pretrained, generative adversarial networks (GANs), and autoencoders (AEs).
Abstract: Brain diseases, including tumors and mental and neurological disorders, seriously threaten the health and well-being of millions of people worldwide. Structural and functional neuroimaging modalities are commonly used by physicians to aid the diagnosis of brain diseases. In clinical settings, specialist doctors typically fuse the magnetic resonance imaging (MRI) data with other neuroimaging modalities for brain disease detection. As these two approaches offer complementary information, fusing these neuroimaging modalities helps physicians accurately diagnose brain diseases. Typically, fusion is performed between a functional and a structural neuroimaging modality. Because the functional modality can complement the structural modality information, thus improving the performance for the diagnosis of brain diseases by specialists. However, analyzing the fusion of neuroimaging modalities is difficult for specialist doctors. Deep Learning (DL) is a branch of artificial intelligence that has shown superior performances compared to more conventional methods in tasks such as brain disease detection from neuroimaging modalities. This work presents a comprehensive review paper in the field of brain disease detection from the fusion of neuroimaging modalities using DL models like convolutional neural networks (CNNs), recurrent neural networks (RNNs), pretrained, generative adversarial networks (GANs), and Autoencoders (AEs). First, neuroimaging modalities and the need for fusion are discussed. Then, review papers published in the field of neuroimaging multimodalities using AI techniques are explored. Moreover, fusion levels based on DL methods, including input, layer, and decision, with related studies conducted on diagnosing brain diseases, are discussed. Other sections present the most important challenges for diagnosing brain diseases from the fusion of neuroimaging modalities. In the discussion section, the details of previous research on the fusion of neuroimaging modalities based on MRI and DL models are reported. In the following, the most important future directions include Datasets, DA, imbalanced data, DL models, explainable AI, and hardware resources are presented. Finally, the main findings of this study are presented in the conclusion section.
14 citations
TL;DR: In this paper , the authors provide an overview on the history, status quo and potential future development of ChatGPT, helping to provide an entry point to think about chatGPT.
Abstract: ChatGPT, an artificial intelligence generated content (AIGC) model developed by OpenAI, has attracted world-wide attention for its capability of dealing with challenging language understanding and generation tasks in the form of conversations. This paper briefly provides an overview on the history, status quo and potential future development of ChatGPT, helping to provide an entry point to think about ChatGPT. Specifically, from the limited open-accessed resources, we conclude the core techniques of ChatGPT, mainly including large-scale language models, in-context learning, reinforcement learning from human feedback and the key technical steps for developing Chat-GPT. We further analyze the pros and cons of ChatGPT and we rethink the duality of ChatGPT in various fields. Although it has been widely acknowledged that ChatGPT brings plenty of opportunities for various fields, mankind should still treat and use ChatGPT properly to avoid the potential threat, e.g., academic integrity and safety challenge. Finally, we discuss several open problems as the potential development of ChatGPT.
7 citations