scispace - formally typeset
Search or ask a question
Author

Yu-Sin Jang

Other affiliations: KAIST
Bio: Yu-Sin Jang is an academic researcher from Gyeongsang National University. The author has contributed to research in topics: Clostridium acetobutylicum & Butanol. The author has an hindex of 24, co-authored 53 publications receiving 2867 citations. Previous affiliations of Yu-Sin Jang include KAIST.


Papers
More filters
Journal ArticleDOI
TL;DR: This study reviews the current status of the bio‐based production of major C2–C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers.
Abstract: Platform chemicals composed of 2-6 carbons derived from fossil resources are used as important precursors for making a variety of chemicals and materials, including solvents, fuels, polymers, pharmaceuticals, perfumes, and foods. Due to concerns regarding our environment and the limited nature of fossil resources, however, increasing interest has focused on the development of sustainable technologies for producing these platform chemicals from renewable resources. The techniques and strategies for developing microbial strains for chemicals production have advanced rapidly, and it is becoming feasible to develop microbes for producing additional types of chemicals, including non-natural molecules. In this study, we review the current status of the bio-based production of major C2-C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers.

351 citations

Journal ArticleDOI
Yu-Sin Jang1, Alok Malaviya1, Changhee Cho1, Joungmin Lee1, Sang Yup Lee1 
TL;DR: Focus is given on various alternative substrates that have been used for Butanol production and on fermentation strategies recently reported to improve butanol production.

271 citations

Journal ArticleDOI
01 Nov 2012-Mbio
TL;DR: It is reported that the direct butanol-forming pathway is a better channel to optimize for butanol production through metabolic flux and mass balance analyses, and a metabolically engineered Clostridium acetobutylicum strain capable of producing butanol to a high titer with high yield and selectivity could be developed by reinforcing the direct BUTA-forming flux.
Abstract: Butanol is an important industrial solvent and advanced biofuel that can be produced by biphasic fermentation by Clostridium acetobutylicum. It has been known that acetate and butyrate first formed during the acidogenic phase are reassimilated to form acetone-butanol-ethanol (cold channel). Butanol can also be formed directly from acetyl-coenzyme A (CoA) through butyryl-CoA (hot channel). However, little is known about the relative contributions of the two butanol-forming pathways. Here we report that the direct butanol-forming pathway is a better channel to optimize for butanol production through metabolic flux and mass balance analyses. Butanol production through the hot channel was maximized by simultaneous disruption of the pta and buk genes, encoding phosphotransacetylase and butyrate kinase, while the adhE1(D485G) gene, encoding a mutated aldehyde/alcohol dehydrogenase, was overexpressed. The ratio of butanol produced through the hot channel to that produced through the cold channel increased from 2.0 in the wild type to 18.8 in the engineered BEKW(pPthlAAD(**)) strain. By reinforcing the direct butanol-forming flux in C. acetobutylicum, 18.9 g/liter of butanol was produced, with a yield of 0.71 mol butanol/mol glucose by batch fermentation, levels which are 160% and 245% higher than those obtained with the wild type. By fed-batch culture of this engineered strain with in situ recovery, 585.3 g of butanol was produced from 1,861.9 g of glucose, with the yield of 0.76 mol butanol/mol glucose and productivity of 1.32 g/liter/h. Studies of two butanol-forming routes and their effects on butanol production in C. acetobutylicum described here will serve as a basis for further metabolic engineering of clostridia aimed toward developing a superior butanol producer. IMPORTANCE Renewable biofuel is one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has the potential to replace gasoline. Due to the lack of efficient genetic manipulation tools, however, strain improvement has been rather slow. Furthermore, complex metabolic characteristics of acidogenesis followed by solventogenesis in this strain have hampered development of engineered clostridia having highly efficient and selective butanol production capability. Here we report for the first time the results of systems metabolic engineering studies of two butanol-forming routes and their relative importances in butanol production. Based on these findings, a metabolically engineered Clostridium acetobutylicum strain capable of producing butanol to a high titer with high yield and selectivity could be developed by reinforcing the direct butanol-forming flux.

239 citations

Journal ArticleDOI
TL;DR: A synthetic acetone operon was constructed and expressed to increase the flux toward isopropanol formation, and a significantly higher titer and yield of IBE could be achieved in the PJC4BK strain lacking in the buk gene.
Abstract: Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adhB-593) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h.

231 citations

Journal ArticleDOI
Hyeon Gi Moon1, Yu-Sin Jang1, Changhee Cho1, Joungmin Lee1, RM Binkley1, Sang Yup Lee1 
TL;DR: This minireview revisits the past 100 years of remarkable achievements made in fermentation technologies, product recovery processes, and strain development in clostridial butanol fermentation through overcoming major technical hurdles.
Abstract: Butanol has been widely used as an important industrial solvent and feedstock for chemical production. Also, its superior fuel properties compared with ethanol make butanol a good substitute for gasoline. Butanol can be efficiently produced by the genus Clostridium through the acetone-butanol-ethanol (ABE) fermentation, one of the oldest industrial fermentation processes. Butanol production via industrial fermentation has recently gained renewed interests as a potential solution to increasing pressure of climate change and environmental problems by moving away from fossil fuel consumption and moving toward renewable raw materials. Great advances over the last 100 years are now reviving interest in bio-based butanol production. However, several challenges to industrial production of butanol still need to be overcome, such as overall cost competitiveness and development of higher performance strains with greater butanol tolerance. This minireview revisits the past 100 years of remarkable achievements made in fermentation technologies, product recovery processes, and strain development in clostridial butanol fermentation through overcoming major technical hurdles.

194 citations


Cited by
More filters
Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production, and to compete with more conventional fuels.
Abstract: Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

986 citations

Journal ArticleDOI
TL;DR: This review examines the many uses and future directions of genome‐scale metabolic reconstructions, and highlights trends and opportunities in the field that will make the greatest impact on many fields of biology.
Abstract: The availability and utility of genome-scale metabolic reconstructions have exploded since the first genome-scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high-throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis-driven discovery, (4) interrogation of multi-species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome-scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology.

839 citations

Journal ArticleDOI
Jeong Wook Lee1, Dokyun Na1, Jong Myoung Park1, Joungmin Lee1, Sol Choi1, Sang Yup Lee1 
TL;DR: The general strategies of systems metabolic engineering are discussed and examples of its application are offered and insights are offered as to when and how each of the different strategies should be used.
Abstract: Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

668 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight five research topics, including the synthesis of renewable monomers and degradable polymers, the development of chemical recycling strategies, new classes of reprocessable thermosets, and the design of advanced catalysts.
Abstract: It is likely that a half-century ago even enthusiastic and optimistic proponents of the synthetic polymer industry (Mr. McGuire included) could not have predicted the massive scale on which synthetic polymers would be manufactured and used today. Ultimately, the future success of this industry will rely on the development of sustainable polymers—materials derived from renewable feedstocks that are safe in both production and use and that can be recycled or disposed of in ways that are environmentally innocuous. Meeting these criteria in an economical manner cannot be achieved without transformative basic research that is the hallmark of this journal. In this Perspective we highlight five research topics—the synthesis of renewable monomers and of degradable polymers, the development of chemical recycling strategies, new classes of reprocessable thermosets, and the design of advanced catalysts—that we believe will play a vital role in the development of sustainable polymers. We also offer our outlook on sev...

603 citations

Journal ArticleDOI
24 Jan 2020-Science
TL;DR: This transformation will require the best of the traditions of science and innovation coupled with new emerging systems thinking and systems design that begins at the molecular level and results in a positive impact on the global scale.
Abstract: The material basis of a sustainable society will depend on chemical products and processes that are designed following principles that make them conducive to life. Important inherent properties of molecules need to be considered from the earliest stage-the design stage-to address whether compounds and processes are depleting versus renewable, toxic versus benign, and persistent versus readily degradable. Products, feedstocks, and manufacturing processes will need to integrate the principles of green chemistry and green engineering under an expanded definition of performance that includes sustainability considerations. This transformation will require the best of the traditions of science and innovation coupled with new emerging systems thinking and systems design that begins at the molecular level and results in a positive impact on the global scale.

509 citations