scispace - formally typeset
Search or ask a question
Author

Yu Wang

Bio: Yu Wang is an academic researcher from Chinese Center for Disease Control and Prevention. The author has contributed to research in topics: Transmission risks and rates & Cohort study. The author has an hindex of 1, co-authored 1 publications receiving 237 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The study confirms the highest risk of transmission prior to symptom onset, and provides the first evidence of the effectiveness of mask use, disinfection and social distancing in preventing COVID-19, and found evidence of faecal transmission.
Abstract: Introduction Transmission of COVID-19 within families and close contacts accounts for the majority of epidemic growth. Community mask wearing, hand washing and social distancing are thought to be effective but there is little evidence to inform or support community members on COVID-19 risk reduction within families. Methods A retrospective cohort study of 335 people in 124 families and with at least one laboratory confirmed COVID-19 case was conducted from 28 February to 27 March 2020, in Beijing, China. The outcome of interest was secondary transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the family. Characteristics and practices of primary cases, of well family contacts and household hygiene practices were analysed as predictors of secondary transmission. Results The secondary attack rate in families was 23.0% (77/335). Face mask use by the primary case and family contacts before the primary case developed symptoms was 79% effective in reducing transmission (OR=0.21, 95% CI 0.06 to 0.79). Daily use of chlorine or ethanol based disinfectant in households was 77% effective (OR=0.23, 95% CI 0.07 to 0.84). Wearing a mask after illness onset of the primary case was not significantly protective. The risk of household transmission was 18 times higher with frequent daily close contact with the primary case (OR=18.26, 95% CI 3.93 to 84.79), and four times higher if the primary case had diarrhoea (OR=4.10, 95% CI 1.08 to 15.60). Household crowding was not significant. Conclusion The study confirms the highest risk of transmission prior to symptom onset, and provides the first evidence of the effectiveness of mask use, disinfection and social distancing in preventing COVID-19. We also found evidence of faecal transmission. This can inform guidelines for community prevention in settings of intense COVID-19 epidemics.

390 citations

Journal ArticleDOI
TL;DR: In this article , the authors present a scenario where the authors have to decide whether or not to adopt a certain curriculum for a given project. But they do not specify the curriculum.
Abstract: 摘要: 实验地球化学主要通过高温高压实验模拟,对元素和同位素在地球内部条件下的行为、性质和效应进行研究,从而对成岩成矿、岩浆演化、流体交代、壳−幔−核分异等地质现象和过程进行制约. 实验地球化学的最初诞生,主要是针对传统地球化学、岩石学和矿床学研究中遇到的难以解决问题进行正演辅助. 实验地球化学的发展,与高温高压实验设备和现代分析技术的成熟和完善密切相关. 近半个世纪以来,实验地球化学的不断成长壮大,极大促进了传统地球化学乃至整个地球科学相关领域的发展. 在未来的10到20年内,实验地球化学有望在以下3个方面进一步加强和取得重要科研成果:(1)深部地球和早期地球;(2)挥发分和地球宜居性;(3)行星形成演化实验模拟. 关键词: 实验地球化学 / 高温高压 / 发展历史 / 研究展望

Cited by
More filters
Journal ArticleDOI
01 Jan 2021
TL;DR: Although SARS-CoV-2 RNA shedding in respiratory and stool samples can be prolonged, duration of viable virus is relatively short-lived.
Abstract: Summary Background Viral load kinetics and duration of viral shedding are important determinants for disease transmission. We aimed to characterise viral load dynamics, duration of viral RNA shedding, and viable virus shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in various body fluids, and to compare SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) viral dynamics. Methods In this systematic review and meta-analysis, we searched databases, including MEDLINE, Embase, Europe PubMed Central, medRxiv, and bioRxiv, and the grey literature, for research articles published between Jan 1, 2003, and June 6, 2020. We included case series (with five or more participants), cohort studies, and randomised controlled trials that reported SARS-CoV-2, SARS-CoV, or MERS-CoV infection, and reported viral load kinetics, duration of viral shedding, or viable virus. Two authors independently extracted data from published studies, or contacted authors to request data, and assessed study quality and risk of bias using the Joanna Briggs Institute Critical Appraisal Checklist tools. We calculated the mean duration of viral shedding and 95% CIs for every study included and applied the random-effects model to estimate a pooled effect size. We used a weighted meta-regression with an unrestricted maximum likelihood model to assess the effect of potential moderators on the pooled effect size. This study is registered with PROSPERO, CRD42020181914. Findings 79 studies (5340 individuals) on SARS-CoV-2, eight studies (1858 individuals) on SARS-CoV, and 11 studies (799 individuals) on MERS-CoV were included. Mean duration of SARS-CoV-2 RNA shedding was 17·0 days (95% CI 15·5–18·6; 43 studies, 3229 individuals) in upper respiratory tract, 14·6 days (9·3–20·0; seven studies, 260 individuals) in lower respiratory tract, 17·2 days (14·4–20·1; 13 studies, 586 individuals) in stool, and 16·6 days (3·6–29·7; two studies, 108 individuals) in serum samples. Maximum shedding duration was 83 days in the upper respiratory tract, 59 days in the lower respiratory tract, 126 days in stools, and 60 days in serum. Pooled mean SARS-CoV-2 shedding duration was positively associated with age (slope 0·304 [95% CI 0·115–0·493]; p=0·0016). No study detected live virus beyond day 9 of illness, despite persistently high viral loads, which were inferred from cycle threshold values. SARS-CoV-2 viral load in the upper respiratory tract appeared to peak in the first week of illness, whereas that of SARS-CoV peaked at days 10–14 and that of MERS-CoV peaked at days 7–10. Interpretation Although SARS-CoV-2 RNA shedding in respiratory and stool samples can be prolonged, duration of viable virus is relatively short-lived. SARS-CoV-2 titres in the upper respiratory tract peak in the first week of illness. Early case finding and isolation, and public education on the spectrum of illness and period of infectiousness are key to the effective containment of SARS-CoV-2. Funding None.

1,061 citations

Journal ArticleDOI
TL;DR: There is preliminary evidence that children and adolescents have lower susceptibility to SARS-CoV-2, with the pooled odds ratio of 0.56 for being an infected contact compared with adults, although seroprevalence in adolescents appeared similar to adults.
Abstract: Importance The degree to which children and adolescents are infected by and transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. The role of children and adolescents in transmission of SARS-CoV-2 is dependent on susceptibility, symptoms, viral load, social contact patterns, and behavior. Objective To systematically review the susceptibility to and transmission of SARS-CoV-2 among children and adolescents compared with adults. Data Sources PubMed and medRxiv were searched from database inception to July 28, 2020, and a total of 13 926 studies were identified, with additional studies identified through hand searching of cited references and professional contacts. Study Selection Studies that provided data on the prevalence of SARS-CoV-2 in children and adolescents (younger than 20 years) compared with adults (20 years and older) derived from contact tracing or population screening were included. Single-household studies were excluded. Data Extraction and Synthesis PRISMA guidelines for abstracting data were followed, which was performed independently by 2 reviewers. Quality was assessed using a critical appraisal checklist for prevalence studies. Random-effects meta-analysis was undertaken. Main Outcomes and Measures Secondary infection rate (contact-tracing studies) or prevalence or seroprevalence (population screening studies) among children and adolescents compared with adults. Results A total of 32 studies comprising 41 640 children and adolescents and 268 945 adults met inclusion criteria, including 18 contact-tracing studies and 14 population screening studies. The pooled odds ratio of being an infected contact in children compared with adults was 0.56 (95% CI, 0.37-0.85), with substantial heterogeneity (I2 = 94.6%). Three school-based contact-tracing studies found minimal transmission from child or teacher index cases. Findings from population screening studies were heterogenous and were not suitable for meta-analysis. Most studies were consistent with lower seroprevalence in children compared with adults, although seroprevalence in adolescents appeared similar to adults. Conclusions and Relevance In this meta-analysis, there is preliminary evidence that children and adolescents have lower susceptibility to SARS-CoV-2, with an odds ratio of 0.56 for being an infected contact compared with adults. There is weak evidence that children and adolescents play a lesser role than adults in transmission of SARS-CoV-2 at a population level. This study provides no information on the infectivity of children.

698 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed an analytical framework to examine mask usage, synthesizing the relevant literature to inform multiple areas: population impact, transmission characteristics, source control, wearer protection, sociological considerations, and implementation considerations.
Abstract: The science around the use of masks by the public to impede COVID-19 transmission is advancing rapidly. In this narrative review, we develop an analytical framework to examine mask usage, synthesizing the relevant literature to inform multiple areas: population impact, transmission characteristics, source control, wearer protection, sociological considerations, and implementation considerations. A primary route of transmission of COVID-19 is via respiratory particles, and it is known to be transmissible from presymptomatic, paucisymptomatic, and asymptomatic individuals. Reducing disease spread requires two things: limiting contacts of infected individuals via physical distancing and other measures and reducing the transmission probability per contact. The preponderance of evidence indicates that mask wearing reduces transmissibility per contact by reducing transmission of infected respiratory particles in both laboratory and clinical contexts. Public mask wearing is most effective at reducing spread of the virus when compliance is high. Given the current shortages of medical masks, we recommend the adoption of public cloth mask wearing, as an effective form of source control, in conjunction with existing hygiene, distancing, and contact tracing strategies. Because many respiratory particles become smaller due to evaporation, we recommend increasing focus on a previously overlooked aspect of mask usage: mask wearing by infectious people ("source control") with benefits at the population level, rather than only mask wearing by susceptible people, such as health care workers, with focus on individual outcomes. We recommend that public officials and governments strongly encourage the use of widespread face masks in public, including the use of appropriate regulation.

679 citations

Journal ArticleDOI
01 Dec 2020
TL;DR: The findings suggest that households are and will continue to be important venues for transmission, even in areas where community transmission is reduced.
Abstract: Importance Crowded indoor environments, such as households, are high-risk settings for the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives To examine evidence for household transmission of SARS-CoV-2, disaggregated by several covariates, and to compare it with other coronaviruses. Data Source PubMed, searched through October 19, 2020. Search terms includedSARS-CoV-2orCOVID-19withsecondary attack rate,household,close contacts,contact transmission,contact attack rate, orfamily transmission. Study Selection All articles with original data for estimating household secondary attack rate were included. Case reports focusing on individual households and studies of close contacts that did not report secondary attack rates for household members were excluded. Data Extraction and Synthesis Meta-analyses were done using a restricted maximum-likelihood estimator model to yield a point estimate and 95% CI for secondary attack rate for each subgroup analyzed, with a random effect for each study. To make comparisons across exposure types, study was treated as a random effect, and exposure type was a fixed moderator. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline was followed. Main Outcomes and Measures Secondary attack rate for SARS-CoV-2, disaggregated by covariates (ie, household or family contact, index case symptom status, adult or child contacts, contact sex, relationship to index case, adult or child index cases, index case sex, number of contacts in household) and for other coronaviruses. Results A total of 54 relevant studies with 77 758 participants reporting household secondary transmission were identified. Estimated household secondary attack rate was 16.6% (95% CI, 14.0%-19.3%), higher than secondary attack rates for SARS-CoV (7.5%; 95% CI, 4.8%-10.7%) and MERS-CoV (4.7%; 95% CI, 0.9%-10.7%). Household secondary attack rates were increased from symptomatic index cases (18.0%; 95% CI, 14.2%-22.1%) than from asymptomatic index cases (0.7%; 95% CI, 0%-4.9%), to adult contacts (28.3%; 95% CI, 20.2%-37.1%) than to child contacts (16.8%; 95% CI, 12.3%-21.7%), to spouses (37.8%; 95% CI, 25.8%-50.5%) than to other family contacts (17.8%; 95% CI, 11.7%-24.8%), and in households with 1 contact (41.5%; 95% CI, 31.7%-51.7%) than in households with 3 or more contacts (22.8%; 95% CI, 13.6%-33.5%). Conclusions and Relevance The findings of this study suggest that given that individuals with suspected or confirmed infections are being referred to isolate at home, households will continue to be a significant venue for transmission of SARS-CoV-2.

512 citations