scispace - formally typeset
Search or ask a question
Author

Yu Yang

Bio: Yu Yang is an academic researcher from South China Agricultural University. The author has contributed to research in topics: Catalysis & Materials science. The author has an hindex of 53, co-authored 336 publications receiving 10001 citations. Previous affiliations of Yu Yang include Academy of Engineering & Northwestern University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, simple methods for using sub- and supercritical water for quantitative extraction of organics from environmental solids are presented, where the extraction temperature from 50 to 250[degree]C (subcritical water) and finally to 400[degree]-C (supercritical water if P > 221 bar) allowed class-selective extractions of polar organics (e.g., chlorinated phenols), low-polarity organics, and nonpolar organics(alkanes) to be performed.
Abstract: Low-polarity organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) typically have very low solubilities (e.g., ppb) in water at ambient conditions because of water's high polarity (dielectric constant, [epsilon] = 80). However, the dielectric constant can be drastically lowered by raising the temperature of the water under moderate pressure with dramatic increases (e.g., to percent levels) in the solubility of low-polarity organics. For example, subcritical water at 250[degree]C and 50 bar has [epsilon] = 27, which allowed quantitative extractions of PAHs in 15 min from soil and urban air particulates. Decreasing the polarity of water by sequentially raising the extraction temperature from 50 to 250[degree]C (subcritical water) and finally to 400[degree]C (supercritical water if P > 221 bar) allowed class-selective extractions of polar organics (e.g., chlorinated phenols), low-polarity organics (e.g., PAHs), and nonpolar organics (alkanes) to be performed. Simple methods for using sub- and supercritical water for quantitative extraction of organics from environmental solids are presented. 30 refs., 6 figs., 5 tabs.

434 citations

Journal ArticleDOI
TL;DR: Transparent inorganic–organic hybrid n-type TFTs fabricated at room temperature by combining In2O3 thin films grown by ion-assisted deposition, with nanoscale organic dielectrics self-assembled in a solution-phase process are reported, suggesting new strategies for achieving ‘invisible’ optoelectronics.
Abstract: High-performance thin-film transistors (TFTs) that can be fabricated at low temperature and are mechanically flexible, optically transparent and compatible with diverse substrate materials are of great current interest. To function at low biases to minimize power consumption, such devices must also contain a high-mobility semiconductor and/or a high-capacitance gate dielectric. Here we report transparent inorganic-organic hybrid n-type TFTs fabricated at room temperature by combining In2O3 thin films grown by ion-assisted deposition, with nanoscale organic dielectrics self-assembled in a solution-phase process. Such TFTs combine the advantages of a high-mobility transparent inorganic semiconductor with an ultrathin high-capacitance/low-leakage organic gate dielectric. The resulting, completely transparent TFTs exhibit excellent operating characteristics near 1.0 V with large field-effect mobilities of >120 cm2 V(-1) s(-1), drain-source current on/off modulation ratio (I(on)/I(off)) approximately 10(5), near-zero threshold voltages and sub-threshold gate voltage swings of 90 mV per decade. The results suggest new strategies for achieving 'invisible' optoelectronics.

348 citations

Journal ArticleDOI
TL;DR: Low-cost materials are used including multiwall carbon nanotube, reduced graphene oxide, and metallic textiles to fabricate composite fabric electrodes, in which MWCNT and RGO are alternatively vacuum-filtrated directly onto Ni-coated cotton fabrics to achieve ultrahigh areal capacitance.
Abstract: High-performance supercapacitors (SCs) are promising energy storage devices to meet the pressing demand for future wearable applications. Because the surface area of a human body is limited to 2 m2 , the key challenge in this field is how to realize a high areal capacitance for SCs, while achieving rapid charging, good capacitive retention, flexibility, and waterproofing. To address this challenge, low-cost materials are used including multiwall carbon nanotube (MWCNT), reduced graphene oxide (RGO), and metallic textiles to fabricate composite fabric electrodes, in which MWCNT and RGO are alternatively vacuum-filtrated directly onto Ni-coated cotton fabrics. The composite fabric electrodes display typical electrical double layer capacitor behavior, and reach an ultrahigh areal capacitance up to 6.2 F cm-2 at a high areal current density of 20 mA cm-2 . All-solid-state fabric-type SC devices made with the composite fabric electrodes and water-repellent treatment can reach record-breaking performance of 2.7 F cm-2 at 20 mA cm-2 at the first charge-discharge cycle, 3.2 F cm-2 after 10 000 charge-discharge cycles, zero capacitive decay after 10 000 bending tests, and 10 h continuous underwater operation. The SC devices are easy to assemble into tandem structures and integrate into garments by simple sewing.

319 citations

Journal ArticleDOI
Hui Zhang1, Lixia Zhao1, Fanglan Geng1, Liang-Hong Guo1, Bin Wan1, Yu Yang1 
TL;DR: In this paper, a carbon dots (CDs) decorated graphitic carbon nitride (g-C3N4) photocatalyst was synthesized via a facile impregnation-thermal method.
Abstract: Environment-friendly metal-free photocatalysts represent a promising alternative to conventional metal-based semiconductors. In this report, a carbon dots (CDs) decorated graphitic carbon nitride (g-C3N4) photocatalyst was synthesized via a facile impregnation-thermal method. Under visible light irradiation, a very low CDs content of 0.5 web in the g-C3N4/CDs composite resulted in a 3.7 times faster reaction rate for phenol photodegradation than pristine g-C3N4. Spectroscopic and photoelectrochemical characterizations revealed that impregnation of CDs into g-C3N4 not only enhanced the production of photogenerated electron-hole pairs by extending the visible light absorption region due to the upconverted photoluminescence character of CDs, but also facilitated electron-hole separation by band alignment in the g-C3N4/CDs junction, thus yielded more holes, O-center dot(2)- and (OH)-O-center dot radicals to promote phenol degradation. These results highlight the potential application of sustainable metal-free photocatalysts in water purification. (C) 2015 Elsevier B.V. All rights reserved.

310 citations

Journal ArticleDOI
Hongpeng Yan1, Yu Yang1, Dongmei Tong1, Xi Xiang1, Changwei Hu1 
TL;DR: In this paper, the catalysts were used in the catalytic conversion of glucose to 5-hydroxymethylfurfural, achieving a yield of 47.6% within 4h at 403 K over SO 4 2− /ZrO 2 −Al 2 O 3 with Zr−Al mole ratio of 1:1.

261 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated and show high chemical and thermal stabilities and an ultrasmooth surface with tunable wettability.
Abstract: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated. These graphene films are fabricated from exfoliated graphite oxide, followed by thermal reduction. The obtained films exhibit a high conductivity of 550 S/cm and a transparency of more than 70% over 1000−3000 nm. Furthermore, they show high chemical and thermal stabilities as well as an ultrasmooth surface with tunable wettability.

4,314 citations

Journal ArticleDOI
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

2,440 citations

Journal ArticleDOI
TL;DR: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,*,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries.
Abstract: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,‡,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries* †Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands ‡Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia

2,267 citations