scispace - formally typeset
Search or ask a question
Author

Yuan Tan

Bio: Yuan Tan is an academic researcher from Taiyuan University of Technology. The author has contributed to research in topics: Superior frontal gyrus & Bipolar disorder. The author has an hindex of 1, co-authored 2 publications receiving 18 citations.

Papers
More filters
Journal ArticleDOI
20 Feb 2020-Entropy
TL;DR: The current review helps to reveal the patterns of dysfunction in the brains of patients with AD and to investigate whether signal complexity can be used as a biomarker to accurately respond to the functional lesion in AD.
Abstract: Alzheimer's disease (AD) is a degenerative brain disease with a high and irreversible incidence. In recent years, because brain signals have complex nonlinear dynamics, there has been growing interest in studying complex changes in the time series of brain signals in patients with AD. We reviewed studies of complexity analyses of single-channel time series from electroencephalogram (EEG), magnetoencephalogram (MEG), and functional magnetic resonance imaging (fMRI) in AD and determined future research directions. A systematic literature search for 2000-2019 was performed in the Web of Science and PubMed databases, resulting in 126 identified studies. Compared to healthy individuals, the signals from AD patients have less complexity and more predictable oscillations, which are found mainly in the left parietal, occipital, right frontal, and temporal regions. This complexity is considered a potential biomarker for accurately responding to the functional lesion in AD. The current review helps to reveal the patterns of dysfunction in the brains of patients with AD and to investigate whether signal complexity can be used as a biomarker to accurately respond to the functional lesion in AD. We proposed further studies in the signal complexities of AD patients, including investigating the reliability of complexity algorithms and the spatial patterns of signal complexity. In conclusion, the current review helps to better understand the complexity of abnormalities in the AD brain and provide useful information for AD diagnosis.

51 citations

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper performed a work using permutation fuzzy entropy (PFEN) to analyze the brain complexity of bipolar disorder patients and found that significantly increased PFEN values mainly appeared in the middle temporal gyrus, angular gyrus and superior occipital gyrus.
Abstract: Bipolar disorder is a manifestation of an emotional disease and is associated with emotional and cognitive dysfunction. The entropy-based method has been widely used to study the complexity of resting-state functional MRI (rs-fMRI) signals in mental diseases; however, alterations in the brain rs-fMRI signal complexities in bipolar disorder patients remain unclear, and previously used entropy methods are sensitive to noise. Here, we performed a work using permutation fuzzy entropy (PFEN), which has better performance than previously used methods, to analyze the brain complexity of bipolar disorder patients. Based on PFEN research, we obtained brain entropy maps of 49 bipolar disorder patients and 49 normal control, extracted the regions of interest to analyze the complexity of abnormal brain regions and further analyzed the correlation between the PFEN values of abnormal brain regions and the clinical measurement scores. Compared with the values in the normal control group, we found that significantly increased PFEN values mainly appeared in the middle temporal gyrus, angular gyrus, superior occipital gyrus and medial superior frontal gyrus, and the decreased PFEN values were found in the inferior temporal gyrus in bipolar disorder patients. In addition, the PFEN values of the angular gyrus was significantly negatively correlated with clinical scores. These findings improve our understanding of the pathophysiology of bipolar disorder patients.

3 citations


Cited by
More filters
Journal ArticleDOI
30 May 2021-Sensors
TL;DR: In this article, the authors reviewed the applications of EEG features and deep learning approaches in driver drowsiness detection, and discussed the open challenges and opportunities in improving driver Drowsiness Detection based on EEG.
Abstract: Detecting drowsiness in drivers, especially multi-level drowsiness, is a difficult problem that is often approached using neurophysiological signals as the basis for building a reliable system In this context, electroencephalogram (EEG) signals are the most important source of data to achieve successful detection In this paper, we first review EEG signal features used in the literature for a variety of tasks, then we focus on reviewing the applications of EEG features and deep learning approaches in driver drowsiness detection, and finally we discuss the open challenges and opportunities in improving driver drowsiness detection based on EEG We show that the number of studies on driver drowsiness detection systems has increased in recent years and that future systems need to consider the wide variety of EEG signal features and deep learning approaches to increase the accuracy of detection

55 citations

Journal ArticleDOI
TL;DR: In this article, the Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials.
Abstract: The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and “interrelatedness” at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and “interrelatedness” rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.

39 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized recent publications focusing on AD detection and the correlation of quantitative EEG features with AD progression, as it is estimated by Mini Mental State Examination (MMSE) score.
Abstract: Alzheimer's Disease (AD) is a neurodegenerative disorder and the most common type of dementia with a great prevalence in western countries. The diagnosis of AD and its progression is performed through a variety of clinical procedures including neuropsychological and physical examination, Electroencephalographic (EEG) recording, brain imaging and blood analysis. During the last decades, analysis of the electrophysiological dynamics in AD patients has gained great research interest, as an alternative and cost-effective approach. This paper summarizes recent publications focusing on (a) AD detection and (b) the correlation of quantitative EEG features with AD progression, as it is estimated by Mini Mental State Examination (MMSE) score. A total of 49 experimental studies published from 2009 until 2020, which apply machine learning algorithms on resting state EEG recordings from AD patients, are reviewed. Results of each experimental study are presented and compared. The majority of the studies focus on AD detection incorporating Support Vector Machines, while deep learning techniques have not yet been applied on large EEG datasets. Promising conclusions for future studies are presented.

30 citations

Journal ArticleDOI
TL;DR: In this article, the authors have surveyed different research studies with various neuroimaging techniques and ML methods to see the effect of using combined data as input for Alzheimer's disease detection.
Abstract: Alzheimer's disease (AD) consists of the gradual process of decreasing volume and quality of neuron connection in the brain, which consists of gradual synaptic integrity and loss of cognitive functions. In recent years, there has been significant attention in AD classification and early detection with machine learning algorithms. There are different neuroimaging techniques for capturing data and using it for the classification task. Input data as images will help machine learning models to detect different biomarkers for AD classification. This marker has a more critical role for AD detection than other diseases because beta-amyloid can extract complex structures with some metal ions. Most researchers have focused on using 3D and 4D convolutional neural networks for AD classification due to reasonable amounts of data. Also, combination neuroimaging techniques like functional magnetic resonance imaging and positron emission tomography for AD detection have recently gathered much attention. However, gathering a combination of data can be expensive, complex, and tedious. For time consumption reasons, most patients prefer to throw one of the neuroimaging techniques. So, in this review article, we have surveyed different research studies with various neuroimaging techniques and ML methods to see the effect of using combined data as input. The result has shown that the use of the combination method would increase the accuracy of AD detection. Also, according to the sensitivity metrics from different machine learning methods, MRI and fMRI showed promising results.

13 citations

Journal ArticleDOI
TL;DR: There has been an increasing trend towards the use of complexity analysis in quantifying neural activity measured by electroencephalography (EEG) signals, which can be broadly categorized as measures of predictability and regularity as mentioned in this paper .
Abstract: There has been an increasing trend towards the use of complexity analysis in quantifying neural activity measured by electroencephalography (EEG) signals. On top of revealing complex neuronal processes of the brain that may not be possible with linear approaches, EEG complexity measures have also demonstrated their potential as biomarkers of psychopathology such as depression and schizophrenia. Unfortunately, the opacity of algorithms and descriptions originating from mathematical concepts have made it difficult to understand what complexity is and how to draw consistent conclusions when applied within psychology and neuropsychiatry research. In this review, we provide an overview and entry-level explanation of existing EEG complexity measures, which can be broadly categorized as measures of predictability and regularity. We then synthesize complexity findings across different areas of psychological science, namely, in consciousness research, mood and anxiety disorders, schizophrenia, neurodevelopmental and neurodegenerative disorders, as well as changes across the lifespan, while addressing some theoretical and methodological issues underlying the discrepancies in the data. Finally, we present important considerations when choosing and interpreting these metrics.

12 citations