scispace - formally typeset
Search or ask a question
Author

Yuan Zhong

Other affiliations: Tsinghua University
Bio: Yuan Zhong is an academic researcher from Stockholm University. The author has contributed to research in topics: Selective laser melting & Microstructure. The author has an hindex of 8, co-authored 20 publications receiving 1309 citations. Previous affiliations of Yuan Zhong include Tsinghua University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal modulator that is able to slow down but not entirely block the dislocation motion.

557 citations

Journal ArticleDOI
TL;DR: In this paper, a fine columnar sub-grain structure of size 0.5μm was observed inside each individual large grain of single-crystal nature and with grain sizes in the range of 10-100μm.
Abstract: Laser melting (LM), with a focused Nd: YAG laser beam, was used to form solid bodies from a 316L austenite stainless steel powder. The microstructure, phase content and texture of the LM stainless steel were characterized and compared with conventional 316L stainless steel. The crack-free LM samples achieved a relative density of 98.6±0.1%. The XRD pattern revealed a single phase Austenite with preferential crystallite growth along the (100) plane and an orientation degree of 0.84 on the building surface. A fine columnar sub-grain structure of size 0.5 μm was observed inside each individual large grain of single-crystal nature and with grain sizes in the range of 10–100 μm. Molybdenum was found to be enriched at the sub-grain boundaries accompanied with high dislocation concentrations. It was proposed that such a sub-grain structure is formed by the compositional fluctuation due to the slow kinetics of homogeneous alloying of large Mo atoms during rapid solidification. The local enrichment of misplaced Mo in the Austenite lattice induced a network of dislocation tangling, which would retard or even block the migration of newly formed dislocations under indentation force, turning otherwise a soft Austenite to hardened steel. In addition, local formation of spherical nano-inclusions of an amorphous chromium-containing silicate was observed. The origin and the implications of the formation of such oxide nano-inclusions were discussed.

526 citations

Journal ArticleDOI
TL;DR: In this paper, a feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E), almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters.

509 citations

Journal ArticleDOI
TL;DR: A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additive manufacturing methods, Electron Beam Melting® (EBM®). Solid specimens of SS316L with 99.8% rela...

206 citations

Journal ArticleDOI
TL;DR: In this article, two additive manufacturing (AM) technologies, selective laser melting (SLM) and electron beam melting (EBM), were applied to manufacture ITER First Wall (FW) Panel parts with complex design.

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications is demonstrated, with austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibiting a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels.
Abstract: Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

1,385 citations

01 Jan 1987

991 citations

Journal ArticleDOI
TL;DR: In this paper, microstructure, defect formation and mechanical properties of AISI 316L components are investigated according to the process parameters used for their fabrication, and a first experimental campaign establishes process parameters guaranteeing a density greater than 98% Samples for microstructural and mechanical characterization are then produced based on these results, varying laser power from 100 W to 150 W, hatch space from 005 mm to 007 mm and orientation from 45° to 90°.

612 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal modulator that is able to slow down but not entirely block the dislocation motion.

557 citations

Journal ArticleDOI
TL;DR: In this paper, a feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E), almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters.

509 citations