Author
YuanTong Gu
Other affiliations: Nanjing Medical University, National University of Singapore, University of New South Wales ...read more
Bio: YuanTong Gu is an academic researcher from Queensland University of Technology. The author has contributed to research in topic(s): Finite element method & Meshfree methods. The author has an hindex of 52, co-authored 550 publication(s) receiving 12583 citation(s). Previous affiliations of YuanTong Gu include Nanjing Medical University & National University of Singapore.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
08 Jun 2005
TL;DR: This book provides first the fundamentals of numerical analysis that are particularly important to meshfree methods, and provides most of the basic meshfree techniques, and can be easily extended to other variations of more complex procedures of mesh free methods.
Abstract: This book aims to present meshfree methods in a friendly and straightforward manner, so that beginners can very easily understand, comprehend, program, implement, apply and extend these methods. It provides first the fundamentals of numerical analysis that are particularly important to meshfree methods. Typical meshfree methods, such as EFG, RPIM, MLPG, LRPIM, MWS and collocation methods are then introduced systematically detailing the formulation, numerical implementation and programming. Many well-tested computer source codes developed by the authors are attached with useful descriptions. The application of the codes can be readily performed using the examples with input and output files given in table form. These codes consist of most of the basic meshfree techniques, and can be easily extended to other variations of more complex procedures of meshfree methods. Readers can easily practice with the codes provided to effective learn and comprehend the basics of meshfree methods.
1,054 citations
[...]
TL;DR: In this article, a Point Interpolation Method (PIM) is presented for stress analysis for two-dimensional solids, where the problem domain is represented by properly scattered points.
Abstract: A Point Interpolation Method (PIM) is presented for stress analysis for two-dimensional solids. In the PIM, the problem domain is represented by properly scattered points. A technique is proposed to construct polynomial interpolants with delta function property based only on a group of arbitrarily distributed points. The PIM equations are then derived using variational principles. In the PIM, the essential boundary conditions can be implemented with ease as in the conventional Finite Element Methods. The present PIM has been coded in FORTRAN. The validity and efficiency of the present PIM formulation are demonstrated through example problems. It is found that the present PIM is very easy to implement, and very flexible for obtained displacements and stresses of desired accuracy in solids. As the elements are not used for meshing the problem domain, the present PIM opens new avenue to develop adaptive analysis codes for stress analysis in solids and structures.
639 citations
[...]
TL;DR: In this article, a point interpolation method (PIM) is presented for stress analysis for two-dimensional solids, where the problem domain is represented by properly scattered points.
Abstract: A point interpolation method (PIM) is presented for stress analysis for two-dimensional solids. In the PIM, the problem domain is represented by properly scattered points. A technique is proposed to construct polynomial interpolants with delta function property based only on a group of arbitrarily distributed points. The PIM equations are then derived using variational principles. In the PIM, the essential boundary conditions can be implemented with ease as in the conventional finite element methods. The present PIM has been coded in FORTRAN. The validity and efficiency of the present PIM formulation are demonstrated through example problems. It is found that the present PIM is very easy to implement, and very flexible for obtained displacements and stresses of desired accuracy in solids. As the elements are not used for meshing the problem domain, the present PIM opens new avenues to develop adaptive analysis codes for stress analysis in solids and structures. Copyright © 2001 John Wiley & Sons, Ltd.
612 citations
[...]
TL;DR: The aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China to provide a basis for formulation of policies and regulations by policy makers in China.
Abstract: Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China.
518 citations
[...]
TL;DR: In this article, a local radial point interpolation method (LRPIM) is presented to deal with boundary value problems for free vibration analyses of two-dimensional solids, where local weak forms are developed using weighted residual method locally from the partial differential equation of free vibration.
Abstract: A local radial point interpolation method (LRPIM) is presented to deal with boundary-value problems for free vibration analyses of two-dimensional solids. Local weak forms are developed using weighted residual method locally from the partial differential equation of free vibration. A technique to construct shape functions using radial function basis is proposed. The shape functions so formulated possess delta function property. Essential boundary conditions can be implemented with ease as in the finite-element method. Some important parameters on the performance of LRPIM are also investigated thoroughly. Numerical examples for free vibration analyses of two-dimensional solids to demonstrate the validity and efficiency of the present LRPIM are presented.
464 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
30,199 citations
Journal Article•
[...]
28,684 citations
[...]
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.
24,496 citations
[...]
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
2,332 citations