scispace - formally typeset
Search or ask a question
Author

YuanTong Gu

Bio: YuanTong Gu is an academic researcher from Queensland University of Technology. The author has contributed to research in topics: Finite element method & Meshfree methods. The author has an hindex of 52, co-authored 550 publications receiving 12583 citations. Previous affiliations of YuanTong Gu include Nanjing Medical University & National University of Singapore.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model of crosslinker unbinding is implemented in a highly coarse-grained granular model of F-actin cytoskeleton, and it is found that the compressive response has dependency on the strain rate.

3 citations

Journal Article
TL;DR: In this paper, the authors have presented the mechanical models of single microfilaments and micro-filament networks at micro-scale, by adopting a coarse-grained simulation strategy, the mechanical stability of microfilament related cellular structures are analyzed.
Abstract: The mechanical properties of microfilament networks are systematically summarized at different special scales in this paper. We have presented the mechanical models of single microfilaments and microfilament networks at microscale. By adopting a coarse-grained simulation strategy, the mechanical stability of microfilaments related cellular structures are analysed. Structural analysis is conducted to microfilament networks to understand the stress relaxation under compression. The nanoscale molecular mechanisms of the microfilaments deformation is also summarized from the viewpoint of molecular dynamics simulation. This paper provides the fundaments of multiscale modelling framework for the mechanical behaviours simulation of hierarchical microfilament networks.

3 citations

Book ChapterDOI
01 Jan 2015
TL;DR: The stiffness of both normal and cell cultured with BN nanoparticles, were compared using Atomic forced microscopy (AFM) and the idea is to observe whether the particles alter the structural integrity of cells by changing their stiffness.
Abstract: Nanoparticles have considerably found practical applications in the field of biomedical engineering in recent years. The large surface to volume ratio and the flexibility to deliver in desired positions make them special than any other nanomaterials. However, before being used in human body, the toxicity of Boron nitride nanoparticle (BN NP) must be evaluated. The upake of nanoparticles was confirmed using confocal imaging. Then the stiffness of both normal and cell cultured with BN nanoparticles, were compared using Atomic forced microscopy (AFM). The idea is to observe whether the particles alter the structural integrity of cells by changing their stiffness.

3 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the contribution of proteoglycan and collagen network to the strain-rate-dependent behavior of the kangaroo knee cartilage, and the plausible reasons for the differences observed in relation to the KG shoulder cartilage.
Abstract: The contribution of the proteoglycan to the strain-rate-dependent mechanical behaviour of cartilage tissues has been suggested to decrease with an increase in the strain-rate. On the other hand, the contribution from the collagen network has been suggested to increase as the strain-rate increases. These conclusions are drawn mainly based on numerical studies conducted on high-load-bearing knee cartilage tissues, while experimental evidence of these behaviours have not been demonstrated previously. Further, in contrast to the reported findings on high-load bearing knee cartilage, our previous study on the low-load-bearing kangaroo shoulder cartilage indicated that proteoglycan and collagen contribution remained steady as the strain-rate increases. Therefore, in the present study, we experimentally investigate the contribution of proteoglycan and collagen network to the strain-rate-dependent behaviour of the kangaroo knee cartilage, and plausible reasons for the differences observed in relation to the kangaroo shoulder cartilage. Firstly, in order to quantify the contribution of proteoglycans and collagen network, the indentation testings on normal, proteoglycan, and collagen-degraded kangaroo knee cartilage were conducted at different strain-rates. Then, structural and compositional differences between the kangaroo knee and shoulder cartilage were assessed qualitatively through polarised light microscopy (PLM) imaging and histological staining. Identified differences in the collagen architecture and proteoglycan composition were incorporated in a fibril-reinforced porohyperelastic Finite Element (FE) model with the objective of explaining the mechanisms underlying differences observed between the two tissues. Experimental results on knee cartilage indicated that when the strain-rate increases, proteoglycan contribution decreases while collagen contribution increases, where statistically significant differences were identified at each strain-rate (p

3 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again

2,587 citations