scispace - formally typeset
Search or ask a question
Author

Yue He

Other affiliations: Beihang University
Bio: Yue He is an academic researcher from Tsinghua University. The author has contributed to research in topics: Generalization & Computer science. The author has an hindex of 6, co-authored 11 publications receiving 63 citations. Previous affiliations of Yue He include Beihang University.

Papers
More filters
Proceedings ArticleDOI
Xingxuan Zhang1, Peng Cui1, Renzhe Xu1, Linjun Zhou1, Yue He1, Zheyan Shen1 
01 Jun 2021
TL;DR: In this paper, the authors propose to remove the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels.
Abstract: Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

113 citations

Posted Content
TL;DR: The experimental results demonstrate that NICO can well support the training of ConvNet model from scratch, and a batch balancing module can help ConvNets to perform better in Non-I.I.D.D., situations with sufficient flexibility.
Abstract: I.I.D. hypothesis between training and testing data is the basis of numerous image classification methods. Such property can hardly be guaranteed in practice where the Non-IIDness is common, causing instable performances of these models. In literature, however, the Non-I.I.D. image classification problem is largely understudied. A key reason is lacking of a well-designed dataset to support related research. In this paper, we construct and release a Non-I.I.D. image dataset called NICO, which uses contexts to create Non-IIDness consciously. Compared to other datasets, extended analyses prove NICO can support various Non-I.I.D. situations with sufficient flexibility. Meanwhile, we propose a baseline model with ConvNet structure for General Non-I.I.D. image classification, where distribution of testing data is unknown but different from training data. The experimental results demonstrate that NICO can well support the training of ConvNet model from scratch, and a batch balancing module can help ConvNets to perform better in Non-I.I.D. settings.

71 citations

Journal ArticleDOI
TL;DR: In this paper, a Non-I.I.D. image dataset called NICO 4, which uses contexts to create non-IIDness consciously, was constructed and released.

44 citations

Proceedings Article
01 Jan 2020
TL;DR: This work proposes a novel variational sample re-weighting (VSR) method to eliminate confounding bias by decorrelating the treatments and confounders and conducts extensive experiments to demonstrate that the predictive model trained on this re-weightsed dataset can achieve more accurate counterfactual outcome prediction.
Abstract: Estimating counterfactual outcome of different treatments from observational data is an important problem to assist decision making in a variety of fields. Among the various forms of treatment specification, bundle treatment has been widely adopted in many scenarios, such as recommendation systems and online marketing. The bundle treatment usually can be abstracted as a high dimensional binary vector, which makes it more challenging for researchers to remove the confounding bias in observational data. In this work, we assume the existence of low dimensional latent structure underlying bundle treatment. Via the learned latent representations of treatments, we propose a novel variational sample re-weighting (VSR) method to eliminate confounding bias by decorrelating the treatments and confounders. Finally, we conduct extensive experiments to demonstrate that the predictive model trained on this re-weighted dataset can achieve more accurate counterfactual outcome prediction.

32 citations

Proceedings ArticleDOI
Yihua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, Lin Gao 
24 May 2022
TL;DR: A novel mutual learning framework for 3D scene stylization that combines a 2D image stylization network and NeRF to fuse the stylization ability of 2D stylized network with the 3D consistency of NeRF is proposed.
Abstract: 3D scene stylization aims at generating stylized images of the scene from arbitrary novel views following a given set of style examples, while ensuring consistency when rendered from different views. Directly applying methods for image or video stylization to 3D scenes cannot achieve such consistency. Thanks to recently proposed neural radiance fields (NeRF), we are able to represent a 3D scene in a consistent way. Consistent 3D scene stylization can be effectively achieved by stylizing the corresponding NeRF. However, there is a significant domain gap between style examples which are 2D images and NeRF which is an implicit volumetric representation. To address this problem, we propose a novel mutual learning framework for 3D scene stylization that combines a 2D image stylization network and NeRF to fuse the stylization ability of 2D stylization network with the 3D consistency of NeRF. We first pre-train a standard NeRF of the 3D scene to be stylized and replace its color prediction module with a style network to obtain a stylized NeRF. It is followed by distilling the prior knowledge of spatial consistency from NeRF to the 2D stylization network through an introduced consistency loss. We also introduce a mimic loss to supervise the mutual learning of the NeRF style module and fine-tune the 2D stylization decoder. In order to further make our model handle ambiguities of 2D stylization results, we introduce learnable latent codes that obey the probability distributions conditioned on the style. They are attached to training samples as conditional inputs to better learn the style module in our novel stylized NeRF. Experimental results demonstrate that our method is superior to existing approaches in both visual quality and long-range consistency.

29 citations


Cited by
More filters
Posted Content
TL;DR: WILDS is presented, a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, and is hoped to encourage the development of general-purpose methods that are anchored to real-world distribution shifts and that work well across different applications and problem settings.
Abstract: Distribution shifts -- where the training distribution differs from the test distribution -- can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild. Despite their ubiquity, these real-world distribution shifts are under-represented in the datasets widely used in the ML community today. To address this gap, we present WILDS, a curated collection of 8 benchmark datasets that reflect a diverse range of distribution shifts which naturally arise in real-world applications, such as shifts across hospitals for tumor identification; across camera traps for wildlife monitoring; and across time and location in satellite imaging and poverty mapping. On each dataset, we show that standard training results in substantially lower out-of-distribution than in-distribution performance, and that this gap remains even with models trained by existing methods for handling distribution shifts. This underscores the need for new training methods that produce models which are more robust to the types of distribution shifts that arise in practice. To facilitate method development, we provide an open-source package that automates dataset loading, contains default model architectures and hyperparameters, and standardizes evaluations. Code and leaderboards are available at this https URL.

579 citations

Journal ArticleDOI
17 Jul 2019
TL;DR: This paper proposes a perceptual-sensitive generative adversarial network (PS-GAN) that can simultaneously enhance the visual fidelity and the attacking ability for the adversarial patch, and treats the patch generation as a patch-to-patch translation via an adversarial process.
Abstract: Deep neural networks (DNNs) are vulnerable to adversarial examples where inputs with imperceptible perturbations mislead DNNs to incorrect results. Recently, adversarial patch, with noise confined to a small and localized patch, emerged for its easy accessibility in real-world. However, existing attack strategies are still far from generating visually natural patches with strong attacking ability, since they often ignore the perceptual sensitivity of the attacked network to the adversarial patch, including both the correlations with the image context and the visual attention. To address this problem, this paper proposes a perceptual-sensitive generative adversarial network (PS-GAN) that can simultaneously enhance the visual fidelity and the attacking ability for the adversarial patch. To improve the visual fidelity, we treat the patch generation as a patch-to-patch translation via an adversarial process, feeding any types of seed patch and outputting the similar adversarial patch with high perceptual correlation with the attacked image. To further enhance the attacking ability, an attention mechanism coupled with adversarial generation is introduced to predict the critical attacking areas for placing the patches, which can help producing more realistic and aggressive patches. Extensive experiments under semi-whitebox and black-box settings on two large-scale datasets GTSRB and ImageNet demonstrate that the proposed PS-GAN outperforms state-of-the-art adversarial patch attack methods.

173 citations

Posted Content
TL;DR: ContinContinual Learning (CL) is a particular machine learning paradigm where the data distribution and learning objective changes through time, or where all the training data and objective criteria are never available at once as mentioned in this paper.
Abstract: Continual learning (CL) is a particular machine learning paradigm where the data distribution and learning objective changes through time, or where all the training data and objective criteria are never available at once. The evolution of the learning process is modeled by a sequence of learning experiences where the goal is to be able to learn new skills all along the sequence without forgetting what has been previously learned. Continual learning also aims at the same time at optimizing the memory, the computation power and the speed during the learning process. An important challenge for machine learning is not necessarily finding solutions that work in the real world but rather finding stable algorithms that can learn in real world. Hence, the ideal approach would be tackling the real world in a embodied platform: an autonomous agent. Continual learning would then be effective in an autonomous agent or robot, which would learn autonomously through time about the external world, and incrementally develop a set of complex skills and knowledge. Robotic agents have to learn to adapt and interact with their environment using a continuous stream of observations. Some recent approaches aim at tackling continual learning for robotics, but most recent papers on continual learning only experiment approaches in simulation or with static datasets. Unfortunately, the evaluation of those algorithms does not provide insights on whether their solutions may help continual learning in the context of robotics. This paper aims at reviewing the existing state of the art of continual learning, summarizing existing benchmarks and metrics, and proposing a framework for presenting and evaluating both robotics and non robotics approaches in a way that makes transfer between both fields easier.

160 citations

Journal ArticleDOI
TL;DR: This paper unify the projections of text and image to the Hamming space into a common reconstructive embedding through rigid mathematical reformulation, which not only reduces the optimization complexity significantly but also facilitates the inter-modal similarity preservation among different modalities.
Abstract: In this paper, we study the problem of cross-modal retrieval by hashing-based approximate nearest neighbor search techniques. Most existing cross-modal hashing works mainly address the issue of multi-modal integration complexity using the same mapping and similarity calculation for data from different media types. Nonetheless, this may cause information loss during the mapping process due to overlooking the specifics of each individual modality. In this paper, we propose a simple yet effective cross-modal hashing approach, termed collective reconstructive embeddings (CRE), which can simultaneously solve the heterogeneity and integration complexity of multi-modal data. To address the heterogeneity challenge, we propose to process heterogeneous types of data using different modality-specific models. Specifically, we model textual data with cosine similarity-based reconstructive embedding to alleviate the data sparsity to the greatest extent, while for image data, we utilize the Euclidean distance to characterize the relationships of the projected hash codes. Meanwhile, we unify the projections of text and image to the Hamming space into a common reconstructive embedding through rigid mathematical reformulation, which not only reduces the optimization complexity significantly but also facilitates the inter-modal similarity preservation among different modalities. We further incorporate the code balance and uncorrelation criteria into the problem and devise an efficient iterative algorithm for optimization. Comprehensive experiments on four widely used multimodal benchmarks show that the proposed CRE can achieve a superior performance compared with the state of the art on several challenging cross-modal tasks.

113 citations

Journal ArticleDOI
TL;DR: In this article, explainable deep learning methods are grouped into three main categories: efficient deep learning via model compression and acceleration, as well as robustness and stability in deep learning.

101 citations