scispace - formally typeset
Search or ask a question
Author

Yue Lin

Bio: Yue Lin is an academic researcher from Xiamen University. The author has contributed to research in topics: Light-emitting diode & Junction temperature. The author has an hindex of 17, co-authored 70 publications receiving 919 citations. Previous affiliations of Yue Lin include Chinese Academy of Sciences & National Chiao Tung University.


Papers
More filters
Journal ArticleDOI
TL;DR: The advantages of high efficiency and long life span of conventional LED chips are inherited by miniaturized ones as the size gets smaller, the resolution enhances, but at the expense of elevating the complexity of fabrication as mentioned in this paper.
Abstract: Displays based on inorganic light-emitting diodes (LED) are considered as the most promising one among the display technologies for the next-generation The chip for LED display bears similar features to those currently in use for general lighting, but it size is shrunk to below 200 microns Thus, the advantages of high efficiency and long life span of conventional LED chips are inherited by miniaturized ones As the size gets smaller, the resolution enhances, but at the expense of elevating the complexity of fabrication In this review, we introduce two sorts of inorganic LED displays, namely relatively large and small varieties The mini-LEDs with chip sizes ranging from 100 to 200 μm have already been commercialized for backlight sources in consumer electronics applications The realized local diming can greatly improve the contrast ratio at relatively low energy consumptions The micro-LEDs with chip size less than 100 μm, still remain in the laboratory The full-color solution, one of the key technologies along with its three main components, red, green, and blue chips, as well color conversion, and optical lens synthesis, are introduced in detail Moreover, this review provides an account for contemporary technologies as well as a clear view of inorganic and miniaturized LED displays for the display community

418 citations

Journal ArticleDOI
TL;DR: In this article, strong internal polarization fields in common c-plane LEDs, especially green, have been shown to be a promising candidate for visible light communication (VLC) in light-emitting diodes (LEDs).
Abstract: Light-emitting diodes (LEDs) have been regarded as promising candidates for visible light communication (VLC); however, strong internal polarization fields in common c-plane LEDs, especially green

86 citations

Journal ArticleDOI
TL;DR: This study discusses the applications of QDs which are used on color conversion filter that exhibit high efficiency in white LEDs, full-color micro-LED devices, and liquid-type structure devices, among others, and the demand for a more straightforward QD deposition technique, whose breakthrough is expected.
Abstract: In terms of their use in displays, quantum dots (QDs) exhibit several advantages, including high illumination efficiency and color rendering, low-cost, and capacity for mass production. Furthermore, they are environmentally friendly. Excellent luminescence and charge transport properties of QDs led to their application in QD-based light-emitting diodes (LEDs), which have attracted considerable attention in display and solid-state lighting applications. In this review, we discuss the applications of QDs which are used on color conversion filter that exhibit high efficiency in white LEDs, full-color micro-LED devices, and liquid-type structure devices, among others. Furthermore, we discuss different QD printing processes and coating methods to achieve the full-color micro-LED. With the rise in popularity of wearable and see-through red, green, and blue (RGB) full-color displays, the flexible substrate is considered as a good potential candidate. The anisotropic conductive film method provides a small controllable linewidth of electrically conductive particles. Finally, we discuss the advanced application for flexible full-color and highly efficient QD micro-LEDs. The general conclusion of this study also involves the demand for a more straightforward QD deposition technique, whose breakthrough is expected.

55 citations

Journal ArticleDOI
TL;DR: In this article, high-oriented Pb(Zr053Ti047)O3 (PZT) films were prepared on Si substrates with ultrathin SiO2 buffer layer by pulsed laser deposition.
Abstract: Highly (100) oriented Pb(Zr053Ti047)O3 (PZT) films were prepared on Si substrates with ultrathin SiO2 buffer layer by pulsed laser deposition Hysteresis measurements show that saturation polarization, remnant polarization and coercive field of the films reach 26 μC/cm2, 10 μC/cm2 and 70 kV/cm, respectively The thickness of SiO2 buffer layer is found to play a significant role on phase purity and orientation of PZT as well as the prevention of interdiffusion It is also found that the grain size and the interdiffusion between PZT and Si are the key factors for the ferroelectric properties of the films, which are discussed together with the synthesis condition in detail

47 citations

Journal ArticleDOI
TL;DR: In this paper, an atomic layer deposition Al2O3 film has been proposed as a mesa passivation layer, which can help increase the quantum efficiency, enhance the moisture resistance, and improve reliability.
Abstract: High-quality epitaxial layers are directly related to internal quantum efficiency. The methods used to design such epitaxial layers are reviewed in this article. The ultraviolet C (UVC) light-emitting diode (LED) epitaxial layer structure exhibits electron leakage; therefore, many research groups have proposed the design of blocking layers and carrier transportation to generate high electron–hole recombination rates. This also aids in increasing the internal quantum efficiency. The cap layer, p-GaN, exhibits high absorption in deep UV radiation; thus, a small thickness is usually chosen. Flip chip design is more popular for such devices in the UV band, and the main factors for consideration are light extraction and heat transportation. However, the choice of encapsulation materials is important, because unsuitable encapsulation materials will be degraded by ultraviolet light irradiation. A suitable package design can account for light extraction and heat transportation. Finally, an atomic layer deposition Al2O3 film has been proposed as a mesa passivation layer. It can provide a low reverse current leakage. Moreover, it can help increase the quantum efficiency, enhance the moisture resistance, and improve reliability. UVC LED applications can be used in sterilization, water purification, air purification, and medical and military fields.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review conducts a comprehensive analysis on the material properties, device structures, and performance of mLED/μLED/OLED emissive displays and mLED backlit LCDs to compare the motion picture response time, dynamic range, and adaptability to flexible/transparent displays.
Abstract: Presently, liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays are two dominant flat panel display technologies Recently, inorganic mini-LEDs (mLEDs) and micro-LEDs (μLEDs) have emerged by significantly enhancing the dynamic range of LCDs or as sunlight readable emissive displays "mLED, OLED, or μLED: who wins?" is a heated debatable question In this review, we conduct a comprehensive analysis on the material properties, device structures, and performance of mLED/μLED/OLED emissive displays and mLED backlit LCDs We evaluate the power consumption and ambient contrast ratio of each display in depth and systematically compare the motion picture response time, dynamic range, and adaptability to flexible/transparent displays The pros and cons of mLED, OLED, and μLED displays are analysed, and their future perspectives are discussed

505 citations

Journal ArticleDOI
TL;DR: The advantages of high efficiency and long life span of conventional LED chips are inherited by miniaturized ones as the size gets smaller, the resolution enhances, but at the expense of elevating the complexity of fabrication as mentioned in this paper.
Abstract: Displays based on inorganic light-emitting diodes (LED) are considered as the most promising one among the display technologies for the next-generation The chip for LED display bears similar features to those currently in use for general lighting, but it size is shrunk to below 200 microns Thus, the advantages of high efficiency and long life span of conventional LED chips are inherited by miniaturized ones As the size gets smaller, the resolution enhances, but at the expense of elevating the complexity of fabrication In this review, we introduce two sorts of inorganic LED displays, namely relatively large and small varieties The mini-LEDs with chip sizes ranging from 100 to 200 μm have already been commercialized for backlight sources in consumer electronics applications The realized local diming can greatly improve the contrast ratio at relatively low energy consumptions The micro-LEDs with chip size less than 100 μm, still remain in the laboratory The full-color solution, one of the key technologies along with its three main components, red, green, and blue chips, as well color conversion, and optical lens synthesis, are introduced in detail Moreover, this review provides an account for contemporary technologies as well as a clear view of inorganic and miniaturized LED displays for the display community

418 citations

Journal ArticleDOI
TL;DR: Micrometre-sized light-emitting diodes (LEDs) based on quantum dots (QDs) will propel the next generation of display technologies, a review by leading researchers shows.
Abstract: Micro-light-emitting diodes (μ-LEDs) are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications, such as mobile phones, wearable watches, virtual/augmented reality, micro-projectors and ultrahigh-definition TVs. However, as the LED chip size shrinks to below 20 μm, conventional phosphor colour conversion cannot present sufficient luminance and yield to support high-resolution displays due to the low absorption cross-section. The emergence of quantum dot (QD) materials is expected to fill this gap due to their remarkable photoluminescence, narrow bandwidth emission, colour tuneability, high quantum yield and nanoscale size, providing a powerful full-colour solution for μ-LED displays. Here, we comprehensively review the latest progress concerning the implementation of μ-LEDs and QDs in display technology, including μ-LED design and fabrication, large-scale μ-LED transfer and QD full-colour strategy. Outlooks on QD stability, patterning and deposition and challenges of μ-LED displays are also provided. Finally, we discuss the advanced applications of QD-based μ-LED displays, showing the bright future of this technology. Micrometre-sized light-emitting diodes (LEDs) based on quantum dots (QDs) will propel the next generation of display technologies, a review by leading researchers shows. Conventional LED designs, with phosphor coatings that convert light to different colours, are difficult to make smaller than 20 micrometres. Jr-Hau He at City University of Hong Kong and co-workers explain how this problem can be tackled using QDs, tiny particles whose optical properties can be tuned by varying their size, providing brighter and more precise colours. Ultra-high-resolution displays based on phospholuminescent QD-LEDs are now being released to the market thanks to finely-controlled methods for synthesising QDs and depositing them onto films. Further research should focus on the best ways to stabilise and protect QD films within LEDs, and to continue developing electroluminescent QD-LEDs, which could potentially outperform their phospholuminescent cousins.

323 citations

Journal ArticleDOI
TL;DR: In this article, the basic structures of AR and VR headsets and operation principles of various holographic optical elements (HOEs) and lithography-enabled devices are described, with detailed description and analysis of some state-of-the-art architectures.
Abstract: With rapid advances in high-speed communication and computation, augmented reality (AR) and virtual reality (VR) are emerging as next-generation display platforms for deeper human-digital interactions. Nonetheless, to simultaneously match the exceptional performance of human vision and keep the near-eye display module compact and lightweight imposes unprecedented challenges on optical engineering. Fortunately, recent progress in holographic optical elements (HOEs) and lithography-enabled devices provide innovative ways to tackle these obstacles in AR and VR that are otherwise difficult with traditional optics. In this review, we begin with introducing the basic structures of AR and VR headsets, and then describing the operation principles of various HOEs and lithography-enabled devices. Their properties are analyzed in detail, including strong selectivity on wavelength and incident angle, and multiplexing ability of volume HOEs, polarization dependency and active switching of liquid crystal HOEs, device fabrication, and properties of micro-LEDs (light-emitting diodes), and large design freedoms of metasurfaces. Afterwards, we discuss how these devices help enhance the AR and VR performance, with detailed description and analysis of some state-of-the-art architectures. Finally, we cast a perspective on potential developments and research directions of these photonic devices for future AR and VR displays.

219 citations