scispace - formally typeset
Search or ask a question
Author

Yue-Ping Xu

Bio: Yue-Ping Xu is an academic researcher from Zhejiang University. The author has contributed to research in topics: Climate change & Precipitation. The author has an hindex of 22, co-authored 99 publications receiving 1407 citations. Previous affiliations of Yue-Ping Xu include University of Twente & Hong Kong University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the impact of climate change on hydrology of the upper reaches of the Qiantang River Basin, East China, for the future period 2011-2100 is investigated.

117 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors evaluated three widely used global high-resolution precipitation products [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Tropical Rainfall Measuring Mission 3B42 Version 7 (TRMM 3b42V7), and National Centers for Environment Prediction-Climate Forecast System Reanalysis (NCEP-CFSR)] against gauge observations with seven statistical indices over two humid regions in China.
Abstract: Satellite-based and reanalysis quantitative precipitation estimates are attractive for hydrologic prediction or forecasting and reliable water resources management, especially for ungauged regions. This study evaluates three widely used global high-resolution precipitation products [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Tropical Rainfall Measuring Mission 3B42 Version 7 (TRMM 3B42V7), and National Centers for Environment Prediction-Climate Forecast System Reanalysis (NCEP-CFSR)] against gauge observations with seven statistical indices over two humid regions in China. Furthermore, the study investigates whether the three precipitation products can be reliably utilized as inputs in Soil and Water Assessment Tool, a semi-distributed hydrological model, to simulate streamflows. Results show that the precipitation estimates derived from TRMM 3B42V7 outperform the other two products with the smallest errors and bias, and highest correlation at monthly scale, which is followed by PERSIANN-CDR and NCEP-CFSR in this rank. However, the superiority of TRMM 3B42V7 in errors, bias, and correlations is not warranted at daily scale. PERSIANN-CDR and 3B42V7 present encouraging potential for streamflow prediction at daily and monthly scale respectively over the two humid regions, whilst the performance of NCEP-CFSR for hydrological applications varies from basin to basin. Simulations forced with 3B42V7 are the best among the three precipitation products in capturing daily measured streamflows, whilst PERSIANN-CDR-driven simulations underestimate high streamflows and high streamflow simulations driven by NCEP-CFSR mostly are overestimated significantly. In terms of extreme events analysis, PERSIANN-CDR often underestimates the extreme precipitation, so do extreme streamflow simulations forced with it. NCEP-CFSR performs just the reverse, compared with PERSIANN-CDR. The performance pattern of TRMM 3B42V7 on extremes is not certain, with coexisting underestimation and overestimation. Copyright © 2016 John Wiley & Sons, Ltd.

108 citations

Journal ArticleDOI
TL;DR: In this paper, a methodology aiming to investigate the impact of climate change and the separate and combined impacts of several uncertainty sources on future extreme flows in the Lanjiang catchment, East China is proposed.

91 citations

Journal ArticleDOI
TL;DR: The results show that SPEI of six months time scales (SPEI-6) represents the soil moisture better than that of three and one month time scale on drought duration, severity and peaks, and the SVR model incorporating climate indices could improve the prediction accuracy.

75 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of using the bias corrected RCM outputs as input on the extreme flows by hydrological models was investigated, and the results showed that after bias correction, the amount, frequency, intensity and variance of the precipitation from the regional climate model resemble the observation better.
Abstract: This study analyses the extreme high flows in Jinhua River basin under the impact of climate change for the near future 2011–2040. The objective of this study is to investigate the effect of using the bias corrected RCM outputs as input on the extreme flows by hydrological models. The future projections are obtained through the PRECIS model with resolution of 50 km × 50 km under climate scenario A1B. The daily precipitation from the PRECIS is bias corrected by distribution based scaling method. Afterwards, three hydrological models (GR4J, HBV and Xinanjiang) are calibrated and applied to simulate the daily discharge in the future. The hydrological models are driven with both bias corrected precipitation and raw precipitation from the PRECIS model for 2011–2040. It is found that after bias correction, the amount, frequency, intensity and variance of the precipitation from the regional climate model resemble the observation better. For the three hydrological models, the simulated annual maximum discharges are higher by using the raw precipitation from PRECIS than by bias corrected precipitation at any return period. Meanwhile, the uncertainties from different models cannot be neglected. The largest difference between three models is about 2,100 m3/s.

71 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations

01 Apr 2013
TL;DR: In this paper, the authors estimated the groundwater depletion rate in North China based on GRACE data and ground-based measurements collected from 2003 to 2010, which is equivalent to a volume of 8.3 km3/yr.
Abstract: [1] Changes in regional groundwater storage in North China were estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites data and ground-based measurements collected from 2003 to 2010. The study area (∼370,000 km2) included the Beijing and Tianjin municipality, the Hebei and Shanxi province, which is one of the largest irrigation areas in the world and is subjected to intensive groundwater-based irrigation. Groundwater depletion in North China was estimated by removing the simulated soil moisture changes from the GRACE-derived terrestrial water storage changes. The rate of groundwater depletion in North China based on GRACE was 2.2 ± 0.3 cm/yr from 2003 to 2010, which is equivalent to a volume of 8.3 ± 1.1 km3/yr. The groundwater depletion rate estimated from monitoring well stations during the same time period was between 2.0 and 2.8 cm/yr, which is consistent with the GRACE-based result. However, the estimated groundwater depletion rate in shallow plain aquifers according to the Groundwater Bulletin of China Northern Plains (GBCNP) for the same time period was only approximately 2.5 km3/yr. The difference in groundwater depletion rates estimated from GRACE and GBCNP data indicates the important contribution of groundwater depletion from deep aquifers in the plain and piedmont regions of North China.

453 citations

01 Dec 2004
TL;DR: In this article, a framework is presented for assessing the predictive uncertainties of environmental models used for extrapolation, which involves the use of multiple conceptual models, assessment of their pedigree and reflection on the extent to which the sampled models adequately represent the space of plausible models.
Abstract: Although uncertainty about structures of environmental models (conceptual uncertainty) is often acknowledged to be the main source of uncertainty in model predictions, it is rarely considered in environmental modelling. Rather, formal uncertainty analyses have traditionally focused on model parameters and input data as the principal source of uncertainty in model predictions. The traditional approach to model uncertainty analysis, which considers only a single conceptual model, may fail to adequately sample the relevant space of plausible conceptual models. As such, it is prone to modelling bias and underestimation of predictive uncertainty. In this paper we review a range of strategies for assessing structural uncertainties in models. The existing strategies fall into two categories depending on whether field data are available for the predicted variable of interest. To date, most research has focussed on situations where inferences on the accuracy of a model structure can be made directly on the basis of field data. This corresponds to a situation of ‘interpolation’. However, in many cases environmental models are used for ‘extrapolation’; that is, beyond the situation and the field data available for calibration. In the present paper, a framework is presented for assessing the predictive uncertainties of environmental models used for extrapolation. It involves the use of multiple conceptual models, assessment of their pedigree and reflection on the extent to which the sampled models adequately represent the space of plausible models. � 2005 Elsevier Ltd. All rights reserved.

417 citations