scispace - formally typeset
Search or ask a question
Author

Yue Wu

Other affiliations: University of California, Berkeley, Stanford University, PARC  ...read more
Bio: Yue Wu is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Carbon nanotube & Adsorption. The author has an hindex of 37, co-authored 102 publications receiving 16947 citations. Previous affiliations of Yue Wu include University of California, Berkeley & Stanford University.


Papers
More filters
Journal ArticleDOI
01 Jun 2007-Carbon
TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.

12,756 citations

Journal ArticleDOI
TL;DR: The results indicate that the fracture in brittle metallic glassy materials might also proceed through the local softening mechanism but at different length scales.
Abstract: We report a brittle Mg-based bulk metallic glass which approaches the ideal brittle behavior. However, a dimple structure is observed at the fracture surface by high resolution scanning electron microscopy, indicating some type of "ductile" fracture mechanism in this very brittle glass. We also show, from the available data, a clear correlation between the fracture toughness and plastic process zone size for various glasses. The results indicate that the fracture in brittle metallic glassy materials might also proceed through the local softening mechanism but at different length scales.

502 citations

Journal ArticleDOI
TL;DR: In this paper, single-walled carbon nanotubes (SWNT) synthesized by laser ablation were electrochemically intercalated with lithium and showed a reversible saturation composition of Li 1.2 C 6 (450 mAh g −1 ).

370 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of processing on the structure and morphology of single-walled carbon nanotubes (SWNT) and their electrochemical intercalation with lithium were investigated.

313 citations

Journal ArticleDOI
11 Nov 1999-Nature
TL;DR: In this article, the authors investigate microscopic transport in supercooled liquids around the glass transition regime, and demonstrate that two distinct processes contribute to long-range transport in the super cooled liquid state: single-atom hopping and collective motion, the latter being the dominant process.
Abstract: The mechanisms of atomic transport in supercooled liquids and the nature of the glass transition are long-standing problems1,2,3,4. Collective atomic motion is thought to play an important role4,5,6 in both phenomena. A metallic supercooled liquid represents an ideal system for studying intrinsic collective motions because of its structural similarity to the “dense random packing of spheres” model7, which is conceptually simple. Unlike polymeric and network glasses, metallic supercooled liquids have only recently become experimentally accessible, following the discovery of bulk metallic glasses8,9,10,11,12. Here we report a 9Be nuclear magnetic resonance study of Zr-based bulk metallic glasses8,9 in which we investigate microscopic transport in supercooled liquids around the glass transition regime. Combining our results with diffusion measurements, we demonstrate that two distinct processes contribute to long-range transport in the supercooled liquid state: single-atom hopping and collective motion, the latter being the dominant process. The effect of the glass transition is clearly visible in the observed diffusion behaviour of the Be atoms.

304 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Abstract: The chemistry of graphene oxide is discussed in this critical review Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references)

10,126 citations

Journal ArticleDOI
22 Jul 2010-ACS Nano
TL;DR: An improved method for the preparation of graphene oxide (GO) is described, finding that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process.
Abstract: An improved method for the preparation of graphene oxide (GO) is described. Currently, Hummers’ method (KMnO4, NaNO3, H2SO4) is the most common method used for preparing graphene oxide. We have found that excluding the NaNO3, increasing the amount of KMnO4, and performing the reaction in a 9:1 mixture of H2SO4/H3PO4 improves the efficiency of the oxidation process. This improved method provides a greater amount of hydrophilic oxidized graphene material as compared to Hummers’ method or Hummers’ method with additional KMnO4. Moreover, even though the GO produced by our method is more oxidized than that prepared by Hummers’ method, when both are reduced in the same chamber with hydrazine, chemically converted graphene (CCG) produced from this new method is equivalent in its electrical conductivity. In contrast to Hummers’ method, the new method does not generate toxic gas and the temperature is easily controlled. This improved synthesis of GO may be important for large-scale production of GO as well as the ...

9,812 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Abstract: Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

8,534 citations