scispace - formally typeset
Search or ask a question
Author

Yuechao Tang

Bio: Yuechao Tang is an academic researcher from Fudan University. The author has contributed to research in topics: Photocurrent & Water splitting. The author has an hindex of 1, co-authored 1 publications receiving 2069 citations.
Topics: Photocurrent, Water splitting, Hydrogen, Nanowire

Papers
More filters
Journal ArticleDOI
TL;DR: The first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO(2) nanowires for photoelectrochemical (PEC) water splitting and opening up new opportunities in various areas, including PEC water splitting, dye-sensitized solar cells, and photocatalysis.
Abstract: We report the first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO2 nanowires for photoelectrochemical (PEC) water splitting. Hydrogen-treated rutile TiO2 (H:TiO2) nanowires were prepared by annealing the pristine TiO2 nanowires in hydrogen atmosphere at various temperatures in a range of 200–550 °C. In comparison to pristine TiO2 nanowires, H:TiO2 samples show substantially enhanced photocurrent in the entire potential window. More importantly, H:TiO2 samples have exceptionally low photocurrent saturation potentials of −0.6 V vs Ag/AgCl (0.4 V vs RHE), indicating very efficient charge separation and transportation. The optimized H:TiO2 nanowire sample yields a photocurrent density of ∼1.97 mA/cm2 at −0.6 V vs Ag/AgCl, in 1 M NaOH solution under the illumination of simulated solar light (100 mW/cm2 from 150 W xenon lamp coupled with an AM 1.5G filter). This photocurrent density corresponds to a solar-to-hydrogen (STH) efficiency of ∼1...

2,306 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting.
Abstract: Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research.

1,990 citations

Journal ArticleDOI
TL;DR: In this paper, a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis is outlined and current progress towards artificial photosynthetic devices is reviewed, with particular focus on visible light active nanostructures.
Abstract: Hydrogen from solar-driven water splitting has the potential to provide clean energy. Current progress towards artificial photosynthetic devices is reviewed, with particular focus on visible light active nanostructures. A vision for a future sustainable hydrogen fuel community based on artificial photosynthesis is outlined.

1,703 citations

Journal ArticleDOI
Xiaoyang Pan1, Min-Quan Yang1, Xianzhi Fu1, Nan Zhang1, Yi-Jun Xu1 
TL;DR: This tutorial minireview gives a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties ofTiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO 2.
Abstract: Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.

1,661 citations

Journal ArticleDOI
TL;DR: It is demonstrated that black TiO(2) nanoparticles obtained through a one-step reduction/crystallization process exhibit a bandgap of only 1.85 eV, which matches well with visible light absorption.
Abstract: The increasing need for new materials capable of solar fuel generation is central in the development of a green energy economy. In this contribution, we demonstrate that black TiO2 nanoparticles obtained through a one-step reduction/crystallization process exhibit a bandgap of only 1.85 eV, which matches well with visible light absorption. The electronic structure of black TiO2 nanoparticles is determined by the unique crystalline and defective core/disordered shell morphology. We introduce new insights that will be useful for the design of nanostructured photocatalysts for energy applications.

1,403 citations

Journal ArticleDOI
TL;DR: The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors.
Abstract: We report a new and general strategy for improving the capacitive properties of TiO2 materials for supercapacitors, involving the synthesis of hydrogenated TiO2 nanotube arrays (NTAs). The hydrogenated TiO2 (denoted as H–TiO2) were obtained by calcination of anodized TiO2 NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H–TiO2 NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm–2 at a scan rate of 100 mV s–1, which is 40 times higher than the capacitance obtained from air-annealed TiO2 NTAs at the same conditions. Importantly, H–TiO2 NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s–1, as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10 000 cycles. The prominent electrochemical capacitive properties of H–TiO2 are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO2 surfa...

1,225 citations