Author
Yueming Li
Bio: Yueming Li is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topic(s): Vibration & Aeroelasticity. The author has an hindex of 19, co-authored 93 publication(s) receiving 1112 citation(s).
Papers
More filters
[...]
TL;DR: The modified EWT (MEWT) method via data-driven adaptive Fourier spectrum segment is proposed for mechanical fault identification and the results show its outstanding performance.
Abstract: Due to the multi-modulation feature in most of the vibration signals, the extraction of embedded fault information from condition monitoring data for mechanical fault diagnosis still is not a relaxed task. Despite the reported achievements, Wavelet transform follows the dyadic partition scheme and would not allow a data-driven frequency partition. And then Empirical Wavelet Transform (EWT) is used to extract inherent modulation information by decomposing signal into mono-components under an orthogonal basis and non-dyadic partition scheme. However, the pre-defined segment way of Fourier spectrum without dependence on analyzed signals may result in inaccurate mono-component identification. In this paper, the modified EWT (MEWT) method via data-driven adaptive Fourier spectrum segment is proposed for mechanical fault identification. First, inner product is calculated between the Fourier spectrum of analyzed signal and Gaussian function for scale representation. Then, adaptive spectrum segment is achieved by detecting local minima of the scale representation. Finally, empirical modes can be obtained by adaptively merging mono-components based on their envelope spectrum similarity. The adaptively extracted empirical modes are analyzed for mechanical fault identification. A simulation experiment and two application cases are used to verify the effectiveness of the proposed method and the results show its outstanding performance.
107 citations
[...]
TL;DR: In this article, the thermal conductivity of five polyurethane foam samples formed by blowing agents of CP, CP+IP, CP−+-245fa and CP+−245fa+LBA were measured using transient plane source method under various environment.
Abstract: Polyurethane foams are widely used in energy conservation field and thermal conductivity is one of the most important properties. To reveal and optimize the thermal insulation performance of PU foams, the thermal conductivity of five PU foam samples formed by blowing agents of CP, CP + IP, CP + 245fa and CP + 245fa + LBA are measured using transient plane source method under various environment. Influences of temperature, humidity, water uptake, alternate high and low temperature, long time storage at high temperature and gas pressure of the atmosphere on the thermal conductivity of PU forms are investigated comprehensively. The mechanism of temperature that affects the thermal conductivity of PU foams is discussed. Fourier transform infrared spectroscopy is adopted to measure the spectral extinction coefficients of these five samples. With the spectral extinction coefficient, the radiative thermal conductivity is calculated from Rosseland model. Then the contributions of radiative heat transfer to the effective thermal conductivity are decomposed. The thermal conductivity of five foams increases non-monotonically with temperature. When stored in moist air, thermal conductivity can increase as high as 10–18%. Radiative thermal conductivity contributes 3.6–4.1% at −40 °C, 7.3–9.0% at 20 °C and 9.1–11.8% at 70 °C to the effective thermal conductivity.
80 citations
[...]
TL;DR: In this article, a study on vibration and acoustic radiation characters of an isotropic rectangular thin plate under thermal environments is presented, which is assumed that thermal loads caused by thermal environments just change the structure stress state.
Abstract: A study on vibration and acoustic radiation characters of an isotropic rectangular thin plate under thermal environments is presented in this paper. It is assumed that thermal loads caused by thermal environments just change the structure stress state. Thermal stresses induced by uniform temperature rise of the plate are determined with the thermo-elastic theory. Then the stress state is used in the following dynamic analysis as a pre-stressed factor. It is observed that thermal loads influence the natural frequencies evidently, especially the fundamental natural frequency. The order of mode shapes stays the same. Dynamic response peaks float to lower frequency range with the increment of structure temperature. Acoustic radiation efficiency of the plate subjected to thermal loads decreases in the mid-frequency band. For validation, numerical simulations are also carried out. It can be found that the combined approach of finite element method (FEM) and boundary element method (BEM) is more appropriate for radiation problems.
51 citations
[...]
TL;DR: Experiments to investigate the vibration and acoustic response characteristics of a clamped rectangular aluminum plate in thermal environments indicated that the initial deflection has a great influence on the natural vibration of the heated plate.
Abstract: Experiments were performed to investigate the vibration and acoustic response characteristics of a clamped rectangular aluminum plate in thermal environments. Modal tests were carried out to study the influence of thermal environment on natural vibration. With the increment of structural temperature, natural frequencies of the plate decrease obviously. Mode shape interchange was observed for the modes with frequencies very close to each other. The thermally induced softening effect has unequal influences on the plate along the two in-plane directions. Numerical methods were also employed to study the experimental phenomena. Calculated results indicated that the initial deflection has a great influence on the natural vibration of the heated plate. Even a slight curvature can reduce the thermally induced softening effect obviously. Dynamic response tests were carried out under acoustic and mechanical excitations, and the measured results indicate that the variation in damping determines the response amplitudes at resonant peaks in the test.
44 citations
[...]
TL;DR: A robust gain-scheduling control-law design method for active flutter suppression based on the proposed linear parametervarying model is investigated and simulation results show that the linear parameter-varying gain- scheduled controller can effectively suppress flutter over a range of airspeeds.
Abstract: The design of classic active flutter controllers has often been based on low-fidelity and low-accuracy linear aerodynamic models. Most of these models were usually treated as a linear time-invariant system, without considering time-varying parameters, such as the Mach number, the angle of attack, the Reynolds numbers, etc. A high-fidelity reduced-order model based on the proper orthogonal decomposition adaptation algorithm is used to develop a new general linear parameter-varying aeroservoelastic model with aerodynamic nonlinearity. A robust gain-scheduling control-law design method for active flutter suppression based on the proposed linear parametervarying model is investigated. The proposed design method is demonstrated with the Goland wing aeroelastic model. The simulation results show that the linear parameter-varying gain-scheduled controller can effectively suppress flutter over a range of airspeeds, and the flutter boundary in the transonic regime is simultaneously increased by nearly 20% to 30%.
35 citations
Cited by
More filters
[...]
02 Nov 2005
TL;DR: In this article, the authors presented a comprehensive analysis of the four Elastic Moduli coefficients of a Unidirectional Lamina Coefficients of Thermal Expansion and Moisture Expansion.
Abstract: INTRODUCTION TO COMPOSITE MATERIALS Chapter Objectives Introduction Classi?cation Recycling Fiber-Reinforced Composites Mechanics Terminology Summary Key Terms Exercise Set References MACROMECHANICAL ANALYSIS OF A LAMINA Chapter Objectives Introduction Review of De?nitions Hooke's Law for Different Types of Materials Hooke's Law for a Two-Dimensional Unidirectional Lamina Hooke's Law for a Two-Dimensional Angle Lamina Engineering Constants of an Angle Lamina Invariant Form of Stiffness and Compliance Matrices for an Angle Lamina Strength Failure Theories of an Angle Lamina Hygrothermal Stresses and Strains in a Lamina Summary Key Terms Exercise Set References APPENDIX A: MATRIX ALGEBRA Key Terms APPENDIX B: TRANSFORMATION OF STRESSES AND STRAINS Transformation of Stress Transformation of Strains Key Terms MICROMECHANICAL ANALYSIS OF A LAMINA Chapter Objectives Introduction Volume and Mass Fractions, Density, and Void Content Evaluation of the Four Elastic Moduli Ultimate Strengths of a Unidirectional Lamina Coefficients of Thermal Expansion Coefficients of Moisture Expansion Summary Key Terms Exercise Set References MACROMECHANICAL ANALYSIS OF LAMINATES Chapter Objectives Introduction Laminate Code Stress-Strain Relations for a Laminate In-Plane and Flexural Modulus of a Laminate Hygrothermal Effects in a Laminate Summary Key Terms Exercise Set References FAILURE, ANALYSIS, AND DESIGN OF LAMINATES Chapter Objectives Introduction Special Cases of Laminates Failure Criterion for a Laminate Design of a Laminated Composite Other Mechanical Design Issues Summary Key Terms Exercise Set References BENDING OF BEAMS Chapter Objectives Introduction Symmetric Beams Nonsymmetric Beams Summary Key Terms Exercise Set References INDEX
323 citations
[...]
TL;DR: In this paper, a 3D meso-scale finite element model of concrete based on in-situ X-ray Computed Tomography (XCT) images is developed and validated.
Abstract: Three-dimensional (3D) meso-scale finite element models of concrete based on in-situ X-ray Computed Tomography (XCT) images are developed and validated in this study. The micro-scale images from a Brazilian-like XCT test are first compressed and then transformed into manageable meso-scale 3D meshes using a voxel hexahedron meshing technique with a stacking algorithm. The continuum damage plasticity model is used to simulate complicated damage and fracture behaviour. Excellent qualitative agreement is found between modelling and the XCT compression test in terms of damage evolution and fracture process on both the surface and interior of the specimen. 3D uniaxial tension tests are also simulated, and it is found that the distribution of voids have profound influences on the strength and crack patterns. The image-based 3D models are proved very promising in elucidating fundamental mechanisms of complicated crack initiation and propagation behaviour that 2D studies are incapable of modelling.
188 citations
[...]
TL;DR: In this paper, an independence-oriented VMD method via correlation analysis is proposed to adaptively extract weak and compound fault feature of wheel set bearing of high speed locomotive, and then the similar modes are combined according to the similarity of their envelopes to solve the over decomposition problem.
Abstract: As one of most critical component of high-speed locomotive, wheel set bearing fault identification has attracted an increasing attention in recent years. However, non-stationary vibration signal with modulation phenomenon and heavy background noise make it difficult to excavate the hidden weak fault feature. Variational Mode Decomposition (VMD), which can decompose the non-stationary signal into couple Intrinsic Mode Functions adaptively and non-recursively, brings a feasible tool. However, heavy background noise seriously affects setting of mode number, which may lead to information loss or over decomposition problem. In this paper, an independence-oriented VMD method via correlation analysis is proposed to adaptively extract weak and compound fault feature of wheel set bearing. To overcome the information loss problem, the appropriate mode number is determined by the criterion of approximate complete reconstruction. Then the similar modes are combined according to the similarity of their envelopes to solve the over decomposition problem. Finally, three applications to wheel set bearing fault of high speed locomotive verify the effectiveness of the proposed method compared with original VMD, EMD and EEMD methods.
174 citations
[...]
TL;DR: In this paper, the authors present a systematic classification of representative volume element (RVE) generation techniques for heterogeneous materials, and divide heterogeneous solids into porous and non-porous media.
Abstract: This work reviews state of the art representative volume element (RVE) generation techniques for heterogeneous materials. To this end, we present a systematic classification considering a wide range of heterogeneous materials of engineering interest. Here, we divide heterogeneous solids into porous and non-porous media, with 0
159 citations