scispace - formally typeset
Search or ask a question
Author

Yuewu Zhao

Bio: Yuewu Zhao is an academic researcher from Southeast University. The author has contributed to research in topics: Medicine & Metal-organic framework. The author has an hindex of 10, co-authored 12 publications receiving 322 citations.

Papers
More filters
Journal ArticleDOI
Yuewu Zhao1, Ling Jiang1, Li Shangguan1, Li Mi1, Anran Liu1, Songqin Liu1 
TL;DR: In this paper, a porphyrin-based two-dimensional metal-organic framework (MOF) with small size and few layers was prepared by coordination chelation between meso-tetra(4-carboxyphenyl)porphine ligand and Zn(II) paddlewheel metal nodes.
Abstract: A novel porphyrin-based two-dimensional metal–organic framework (MOF) nanodisk with small size and few layers was prepared by coordination chelation between meso-tetra(4-carboxyphenyl)porphine ligand and Zn(II) paddlewheel metal nodes. With 4,4′-biphenyldicarboxylic acid (BPDC) as nucleation modulator, the anisotropic growth of MOF was impeded by the increased steric hindrance, yielding small Zn–TCPP(BP) MOF crystals. The as-prepared MOF nanodisk exhibited good electrocatalytic activity and selectivity towards nitrite due to the independent distribution of the porphyrin molecules in the framework and the sandwich structure of the prepared Zn–TCPP(BP) nanodisk, which increased the accessible active sites.

93 citations

Journal ArticleDOI
Yuewu Zhao1, Yuanjian Zhang1, Anran Liu1, Zhenzhen Wei1, Songqin Liu1 
TL;DR: The results suggest that Hem/GH could be potentially used for practical application due to its high adsorption ability, excellent photocatalytic activity, and strong antibacterial properties.
Abstract: A three-dimensional hemin-functionalized graphene hydrogel (Hem/GH) was prepared by a facile self-assembly approach. The as-prepared Hem/GH showed good mechanical strength with a storage modulus of 609–642 kPa and a high adsorption capacity to organic dye contaminants (341 mg g–1 for rhodamine B). Moreover, Hem/GH could be used as a photosensitizer for the photocatalytic degradation of organic dyes and displayed superior photodegradation activity of methylene blue (MB). This result was better than that of counterparts such as graphene hydrogel (GH) and commercial catalyst P25. The excellent cycling performance of the Hem/GH was well maintained even after multiple cycles on adsorption process and photocatalytic reaction. Interestingly, after the photodegradation of MB, a light-induced pH change of the solution from alkaline pH 8.99 to acidic pH 3.82 was observed, and 10 wt % total organic carbon remained. The liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) analysis confirmed the generati...

81 citations

Journal ArticleDOI
Anran Liu1, Fang Zhao1, Yuewu Zhao1, Li Shangguan1, Songqin Liu1 
TL;DR: The proposed CL imaging immunoassay possess high throughput and acceptable reproducibility, stability and accuracy, which made it great potential to available to distinguish different isoforms of PSA in serum samples.

67 citations

Journal ArticleDOI
TL;DR: In this article , a review of the latest suggested adsorption mechanisms, kinetics, and isotherms of MOFs-based materials for removing cadmium ions is presented.
Abstract: Various articles have been written about MOFs, which are organic-inorganic polymer structures that are unique in three-dimensional porosity, crystalline structure, and their ability to adsorb cadmium ion pollutants from aqueous solutions. These materials possess active metal sites, highly porous structures, high specific surfaces, high chemical functionality, and porous topologies. It is necessary to study adsorption kinetics, isotherms, and mechanisms in order to better understand the adsorption process. Adsorption kinetics can provide information about the adsorption rate and reaction pathway of adsorbents. Adsorption isotherms analyze the possibility of absorbances based on the Gibbs equation and thermodynamic theories. Moreover, in practical applications, knowledge of the adsorption mechanism is essential for predicting adsorption reactions and designing MOFs structures. In this review, the latest suggested adsorption mechanisms, kinetics, and isotherms of MOFs-based materials for removing cadmium ions are presented. A comparison is then conducted between different MOFs and the mechanisms of cadmium ion removal. We also discuss the future role of MOFs in removing environmental contaminants. Lastly, we discuss the gap in research and limitations of MOFs as adsorbents in actual applications, and probable technology development for the development of cost-efficient and sustainable MOFs for metal ion removal.

45 citations

Journal ArticleDOI
TL;DR: The fuel tolerance and durability under the electrochemical environment of the N-MGPPy catalyst were found to be superior to the Pt/C catalyst.
Abstract: We report a general method for the fabrication of three-dimensional (3D) macroporous graphene/conducting polymer modified electrode and nitrogen-doped graphene modified electrode. This method involves three consecutive steps. First, the 3D macroporous graphene (3D MG) electrode was fabricated electrochemically by reducing graphene oxide dispersion on different conducting substrates and used hydrogen bubbles as the dynamic template. The morphology and pore size of 3D MG could be governed by the use of surfactants and the dynamics of bubble generation and departure. Second, 3D macroporous graphene/polypyrrole (MGPPy) composites were constructed via directly electropolymerizing pyrrole monomer onto the networks of 3D MG. Due to the benefit of the good conductivity of 3D MG and pseudocapacitance of PPy, the composites manifest outstanding area specific capacitance of 196 mF cm–2 at a current density of 1 mA cm–2. The symmetric supercapacitor device assembled by the composite materials had a good capacity prop...

42 citations


Cited by
More filters
Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent advances in the synthesis of 2D MOF nanosheets by using top-down methods, e.g. sonication exfoliation, mechanical ex foliation, Li-intercalation exfoliated and chemical exfolation, and bottom-up methods, i.e. interfacial synthesis, three-layer synthesis, surfactant-assisted synthesis, modulated synthesis, and sonication synthesis.
Abstract: Two-dimensional (2D) metal–organic framework (MOF) nanosheets are attracting increasing research attention due to their unique properties originating from their ultrathin thickness, large surface area and high surface-to-volume atom ratios. Many great advances have been made in the synthesis and application of 2D MOF nanosheets over the past few years. In this review, we summarize the recent advances in the synthesis of 2D MOF nanosheets by using top-down methods, e.g. sonication exfoliation, mechanical exfoliation, Li-intercalation exfoliation and chemical exfoliation, and bottom-up methods, i.e. interfacial synthesis, three-layer synthesis, surfactant-assisted synthesis, modulated synthesis, and sonication synthesis. In addition, the recent progress in 2D MOF nanosheet-based nanocomposites is also briefly introduced. The potential applications of 2D MOF nanosheets in gas separation, energy conversion and storage, catalysis, sensors and biomedicine are discussed. Finally, we give our personal insights into the challenges and opportunities for the future research of 2D MOF nanosheets and their composites.

842 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent progress in the development of OSMs based on small-molecule fluorophores, aggregation-induced emission (AIE) dyes and semiconducting oligomer/polymer nanoparticles (SONs/SPNs) for advanced biophotonic applications and highlights OSMs as a multifunctional platform for a wide range of biomedical applications.
Abstract: Biophotonics as a highly interdisciplinary frontier often requires the assistance of optical agents to control the light pathways in cells, tissues and living organisms for specific biomedical applications. Organic semiconducting materials (OSMs) composed of π-conjugated building blocks as the optically active components have recently emerged as a promising category of biophotonic agents. OSMs possess common features including excellent optical properties, good photostability and biologically benign composition. This review summarizes the recent progress in the development of OSMs based on small-molecule fluorophores, aggregation-induced emission (AIE) dyes and semiconducting oligomer/polymer nanoparticles (SONs/SPNs) for advanced biophotonic applications. OSMs have been exploited as imaging agents to transduce biomolecular interactions into second near-infrared fluorescence, chemiluminescence, afterglow or photoacoustic signals, enabling deep-tissue ultrasensitive imaging of biological tissues, disease biomarkers and physiological indexes. By fine-tuning the molecular structures, OSMs can also convert light energy into cytotoxic free radicals or heat, allowing for effective cancer phototherapy. Due to their instant light response and efficient light-harvesting properties, precise regulation of biological activities using OSMs as remote transducers has been demonstrated for protein ion channels, gene transcription and protein activation. In addition to highlighting OSMs as a multifunctional platform for a wide range of biomedical applications, current challenges and perspectives of OSMs in biophotonics are discussed.

777 citations

Journal Article
TL;DR: This study quantifies energy transfer to and fluorescence quenching by graphene, critical properties for novel applications in photovoltaic devices and as a molecular ruler.
Abstract: Energy transfer from photoexcited zero-dimensional systems to metallic systems plays a prominent role in modern day materials science. A situation of particular interest concerns the interaction between a photoexcited dipole and an atomically thin metal. The recent discovery of graphene layers permits investigation of this phenomenon. Here we report a study of fluorescence from individual CdSe/ZnS nanocrystals in contact with single- and few-layer graphene sheets. The rate of energy transfer is determined from the strong quenching of the nanocrystal fluorescence. For single-layer graphene, we find a rate of approximately 4 ns(-1), in agreement with a model based on the dipole approximation and a tight-binding description of graphene. This rate increases significantly with the number of graphene layers, before approaching the bulk limit. Our study quantifies energy transfer to and fluorescence quenching by graphene, critical properties for novel applications in photovoltaic devices and as a molecular ruler.

304 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of different aspects of 2D MOF layered architectures such as topology, interpenetration, structural transformations, properties, and applications.
Abstract: Among the recent developments in metal-organic frameworks (MOFs), porous layered coordination polymers (CPs) have garnered attention due to their modular nature and tunable structures. These factors enable a number of properties and applications, including gas and guest sorption, storage and separation of gases and small molecules, catalysis, luminescence, sensing, magnetism, and energy storage and conversion. Among MOFs, two-dimensional (2D) compounds are also known as 2D CPs or 2D MOFs. Since the discovery of graphene in 2004, 2D materials have also been widely studied. Several 2D MOFs are suitable for exfoliation as ultrathin nanosheets similar to graphene and other 2D materials, making these layered structures useful and unique for various technological applications. Furthermore, these layered structures have fascinating topological networks and entanglements. This review provides an overview of different aspects of 2D MOF layered architectures such as topology, interpenetration, structural transformations, properties, and applications.

300 citations