scispace - formally typeset
Search or ask a question
Author

Yufei Tao

Bio: Yufei Tao is an academic researcher from The Chinese University of Hong Kong. The author has contributed to research in topics: Query optimization & Nearest neighbor search. The author has an hindex of 64, co-authored 202 publications receiving 15631 citations. Previous affiliations of Yufei Tao include University of Queensland & Hong Kong University of Science and Technology.


Papers
More filters
Journal ArticleDOI
01 Mar 2005
TL;DR: In this paper, a branch-and-bound skyline (BBS) algorithm based on nearest-neighbor search is proposed, which is I/O optimal and performs a single access only to those nodes that may contain skyline points.
Abstract: The skyline of a d-dimensional dataset contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive methods that can quickly return the initial results without reading the entire database. All the existing algorithms, however, have some serious shortcomings which limit their applicability in practice. In this article we develop branch-and-bound skyline (BBS), an algorithm based on nearest-neighbor search, which is I/O optimal, that is, it performs a single access only to those nodes that may contain skyline points. BBS is simple to implement and supports all types of progressive processing (e.g., user preferences, arbitrary dimensionality, etc). Furthermore, we propose several interesting variations of skyline computation, and show how BBS can be applied for their efficient processing.

905 citations

Proceedings ArticleDOI
09 Jun 2003
TL;DR: BBS is a progressive algorithm also based on nearest neighbor search, which is IO optimal, i.e., it performs a single access only to those R-tree nodes that may contain skyline points and its space overhead is significantly smaller than that of NN.
Abstract: The skyline of a set of d-dimensional points contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive (or online) algorithms that can quickly return the first skyline points without having to read the entire data file. Currently, the most efficient algorithm is NN (nearest neighbors), which applies the divide -and-conquer framework on datasets indexed by R-trees. Although NN has some desirable features (such as high speed for returning the initial skyline points, applicability to arbitrary data distributions and dimensions), it also presents several inherent disadvantages (need for duplicate elimination if d>2, multiple accesses of the same node, large space overhead). In this paper we develop BBS (branch-and-bound skyline), a progressive algorithm also based on nearest neighbor search, which is IO optimal, i.e., it performs a single access only to those R-tree nodes that may contain skyline points. Furthermore, it does not retrieve duplicates and its space overhead is significantly smaller than that of NN. Finally, BBS is simple to implement and can be efficiently applied to a variety of alternative skyline queries. An analytical and experimental comparison shows that BBS outperforms NN (usually by orders of magnitude) under all problem instances.

853 citations

Proceedings ArticleDOI
01 Sep 2006
TL;DR: A linear-time algorithm is developed for computing anatomized tables that obey the l-diversity privacy requirement, and minimize the error of reconstructing the microdata.
Abstract: This paper presents a novel technique, anatomy, for publishing sensitive data. Anatomy releases all the quasi-identifier and sensitive values directly in two separate tables. Combined with a grouping mechanism, this approach protects privacy, and captures a large amount of correlation in the microdata. We develop a linear-time algorithm for computing anatomized tables that obey the l-diversity privacy requirement, and minimize the error of reconstructing the microdata. Extensive experiments confirm that our technique allows significantly more effective data analysis than the conventional publication method based on generalization. Specifically, anatomy permits aggregate reasoning with average error below 10%, which is lower than the error obtained from a generalized table by orders of magnitude.

727 citations

Book ChapterDOI
09 Sep 2003
TL;DR: A Euclidean restriction and a network expansion framework that take advantage of location and connectivity to efficiently prune the search space are developed and applied to the most popular spatial queries.
Abstract: Despite the importance of spatial networks in real-life applications, most of the spatial database literature focuses on Euclidean spaces. In this paper we propose an architecture that integrates network and Euclidean information, capturing pragmatic constraints. Based on this architecture, we develop a Euclidean restriction and a network expansion framework that take advantage of location and connectivity to efficiently prune the search space. These frameworks are successfully applied to the most popular spatial queries, namely nearest neighbors, range search, closest pairs and e-distance joins, in the context of spatial network databases.

675 citations

Proceedings ArticleDOI
27 Jun 2006
TL;DR: Wang et al. as discussed by the authors presented a new generalization framework based on the concept of personalized anonymity, which performs the minimum generalization for satisfying everybody's requirements, and thus retains the largest amount of information from the microdata.
Abstract: We study generalization for preserving privacy in publication of sensitive data. The existing methods focus on a universal approach that exerts the same amount of preservation for all persons, with-out catering for their concrete needs. The consequence is that we may be offering insufficient protection to a subset of people, while applying excessive privacy control to another subset. Motivated by this, we present a new generalization framework based on the concept of personalized anonymity. Our technique performs the minimum generalization for satisfying everybody's requirements, and thus, retains the largest amount of information from the microdata. We carry out a careful theoretical study that leads to valuable insight into the behavior of alternative solutions. In particular, our analysis mathematically reveals the circumstances where the previous work fails to protect privacy, and establishes the superiority of the proposed solutions. The theoretical findings are verified with extensive experiments.

662 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

9,627 citations

01 Jan 2002

9,314 citations

Book ChapterDOI
Cynthia Dwork1
25 Apr 2008
TL;DR: This survey recalls the definition of differential privacy and two basic techniques for achieving it, and shows some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.
Abstract: Over the past five years a new approach to privacy-preserving data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that a formal and ad omnia privacy guarantee is defined, and the data analysis techniques presented are rigorously proved to satisfy the guarantee. The key privacy guarantee that has emerged is differential privacy. Roughly speaking, this ensures that (almost, and quantifiably) no risk is incurred by joining a statistical database. In this survey, we recall the definition of differential privacy and two basic techniques for achieving it. We then show some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.

3,314 citations

Proceedings ArticleDOI
15 Apr 2007
TL;DR: T-closeness as mentioned in this paper requires that the distribution of a sensitive attribute in any equivalence class is close to the distributions of the attribute in the overall table (i.e., the distance between the two distributions should be no more than a threshold t).
Abstract: The k-anonymity privacy requirement for publishing microdata requires that each equivalence class (ie, a set of records that are indistinguishable from each other with respect to certain "identifying" attributes) contains at least k records Recently, several authors have recognized that k-anonymity cannot prevent attribute disclosure The notion of l-diversity has been proposed to address this; l-diversity requires that each equivalence class has at least l well-represented values for each sensitive attribute In this paper we show that l-diversity has a number of limitations In particular, it is neither necessary nor sufficient to prevent attribute disclosure We propose a novel privacy notion called t-closeness, which requires that the distribution of a sensitive attribute in any equivalence class is close to the distribution of the attribute in the overall table (ie, the distance between the two distributions should be no more than a threshold t) We choose to use the earth mover distance measure for our t-closeness requirement We discuss the rationale for t-closeness and illustrate its advantages through examples and experiments

3,281 citations

01 Jan 2006
TL;DR: There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99].
Abstract: The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99], Building Data Mining Applications for CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning Tools and Techniques by Witten and Frank [WF05], Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01], The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF01], Data Mining: Introductory and Advanced Topics by Dunham, and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03]. There are also books containing collections of papers on particular aspects of knowledge discovery, such as Machine Learning and Data Mining: Methods and Applications edited by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major database, data mining and machine learning conferences.

2,591 citations