scispace - formally typeset
Search or ask a question
Author

Yuh-Lien Chen

Bio: Yuh-Lien Chen is an academic researcher from National Taiwan University. The author has contributed to research in topics: Inflammation & Cell adhesion molecule. The author has an hindex of 44, co-authored 122 publications receiving 5154 citations. Previous affiliations of Yuh-Lien Chen include Taipei Veterans General Hospital & National Yang-Ming University.


Papers
More filters
Journal ArticleDOI
01 Jun 2007-Diabetes
TL;DR: High glucose impaired the proliferation and function of early and late EPCs, suggesting the role of NO-related rather than oxidative stress–mediated mechanisms in hyperglycemia-caused EPC downregulation.
Abstract: OBJECTIVE—Endothelial progenitor cells (EPCs) are impaired in diabetes. This study aimed to investigate the direct effects of high glucose on EPCs. RESEARCH DESIGN AND METHODS—Mononuclear cells isolated from healthy subjects were incubated with glucose/mannitol or drugs for EPC study. After 4 days of culture, attached early EPCs appeared. The monolayer late EPCs with cobblestone shape appeared at 2–4 weeks. Various immunofluroscence stainings were used to characterize the early and late EPCs. Senescence assay and the activity of endothelial nitric oxide synthase (eNOS) were determined. Migration and tube formation assay were done to evaluate the capacity for vasculogenesis in late EPCs. RESULTS—Chronic incubation with high glucose but not mannitol (osmotic control) dose-dependently reduced the number and proliferation of early and late EPCs, respectively. High glucose enhanced EPC senescence and impaired the migration and tube formation of late EPCs. High glucose also decreased eNOS, FoxO1, and Akt phosphorylation and bioavailable nitric oxide (NO) in both EPCs. The effects of high glucose could be ameliorated by coincubation with NO donor sodium nitroprusside or p38 mitogen–activated protein kinase inhibitor and deteriorated by eNOS inhibitor or PI3K (phosphatidylinositol 3′-kinase) inhibitor. Antioxidants including vitamin C, N -acetylcysteine–and polyethylene glycol (PEG)-conjugated superoxide dismutase, and PEG-catalase had no effects, whereas pyrrolidine dithiocarbamate, diphenyleneiodonium, apocynin, and rotenone even deteriorated the downregulation of both EPCs. CONCLUSIONS—High glucose impaired the proliferation and function of early and late EPCs. NO donor but not antioxidants reversed the impairments, suggesting the role of NO-related rather than oxidative stress–mediated mechanisms in hyperglycemia-caused EPC downregulation.

317 citations

Journal ArticleDOI
TL;DR: Results indicate M SCs in alginate can form cartilage and the MSCs-alginate system represents a relevant model for the study of the molecular mechanisms involved in the chondrogenesis and endochondral ossification.
Abstract: Mesenchymal stem cells (MSCs) have the capacity for self-renewal and can form bone, fat, and cartilage. Alginate forms a viscous solution when dissolved in 0.9% saline and gels on contact with divalent cations. The viability and phenotype maintenance of chondrocytes in alginate beads have been well documented. However, little is known about the effect of microencapsulation in alginate on chondrogenesis of MSCs. In this study, human MSCs encapsulated in alginate beads were cultured in serum-free medium with the addition of transforming growth factor (TGF)beta1 (10 ng/mL), dexamethasone (10(-7) M), and ascorbate 2-phosphate (50 microg/mL). The MSCs in alginate assumed a rounded morphology with lacunae around them after 1 week in culture. Cell aggregates were observed at 2 weeks or longer in culture. Histological findings agreed with the clinical determination of hyaline cartilage, characterized by isolated cells with ground substance positive in Safranin-O staining and immunohistochemistry for collagen type II at the periphery of cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the expression of COL2A1 and COL10A1, marker of chondrocytes and hypertrophy chondrocytes, respectively. These results indicate MSCs in alginate can form cartilage and the MSCs-alginate system represents a relevant model for the study of the molecular mechanisms involved in the chondrogenesis and endochondral ossification.

228 citations

Journal ArticleDOI
TL;DR: This was the first study to demonstrate the cytotoxicity of corrosion products of current nitinol stent wire on smooth muscle cells, which might affect the postimplantation neointimal hyperplasia and the patency rate of cardiovascular stents.
Abstract: Although nitinol is one of most popular materials of intravascular stents, there are still few confirmative biocompatibility data available, especially in vascular smooth muscle cells. In this report, the nitinol wires were corroded in Dulbecco's modified Eagle's medium with constant electrochemical breakdown voltage and the supernatant and precipitates of corrosion products were prepared as culture media. The dose and time effects of different concentrations of corrosion products on the growth and morphology of smooth muscle cells were evaluated with [(3)H]-thymidine uptake ratio and cell cycle sorter. Both the supernatant and precipitate of the corrosive products of nitinol wire were toxic to the primary cultured rat aortic smooth muscle cells. The growth inhibition was correlated well with the increased concentrations of the corrosion products. Although small stimulation was found with released nickel concentration of 0.95 +/- 0.23 ppm, the growth inhibition became significant when the nickel concentration was above 9 ppm. The corrosion products also altered cell morphology, induced cell necrosis, and decreased cell numbers. The cell replication was inhibited at the G0-G1 to S transition phase. This was the first study to demonstrate the cytotoxicity of corrosion products of current nitinol stent wire on smooth muscle cells, which might affect the postimplantation neointimal hyperplasia and the patency rate of cardiovascular stents.

180 citations

Journal ArticleDOI
TL;DR: It is demonstrated that SME and Sal B have anti‐inflammatory properties and may explain their anti‐atherosclerotic properties, in addition to their previously reported inhibition of LDL, which may help explain their efficacy in the treatment of atherosclerosis.
Abstract: Attachment to, and migration of leukocytes into the vessel wall is an early event in atherogenesis. Expression of cell adhesion molecules by the arterial endothelium may play a major role in atherosclerosis. It has been suggested that antioxidants inhibit the expression of adhesion molecules and may thus attenuate the processes leading to atherosclerosis. In the present study, the effects of a potent water-soluble antioxidant, salvianolic acid B (Sal B), and an aqueous ethanolic extract (SME), both derived from a Chinese herb, Salvia miltiorrhiza, on the expression of endothelial-leukocyte adhesion molecules by tumor necrosis factor-alpha (TNF-alpha)-treated human aortic endothelial cells (HAECs) were investigated. When pretreated with SME (50 and 100 microg/ml), the TNF-alpha-induced expression of vascular adhesion molecule-1 (VCAM-1) was notably attenuated (77.2 +/- 3.2% and 80.0 +/- 2.2%, respectively); and with Sal B (1, 2.5, 5, 10, and 20 microg/ml), 84.5 +/- 1.9%, 78.8 +/- 1.2%, 58.9 +/- 0.4%, 58.7 +/- 0.9%, and 57.4 +/- 0.3%, respectively. Dose-dependent lowering of expression of intercellular cell adhesion molecule-1 (ICAM-1) was also seen with SME or Sal B. In contrast, the expression of endothelial cell selectin (E-selectin) was not affected. SME (50 microg/ml) or Sal B (5 microg/ml) significantly reduced the binding of the human monocytic cell line, U937, to TNF-alpha-stimulated HAECs (45.7 +/- 2.5% and 55.8 +/- 1.2%, respectively). SME or Sal B significantly inhibited TNF-alpha-induced activation of nuclear factor kappa B (NF-kappaB) in HAECs (0.36- and 0.48-fold, respectively). These results demonstrate that SME and Sal B have anti-inflammatory properties and may explain their anti-atherosclerotic properties. This new mechanism of action of Sal B and SME, in addition to their previously reported inhibition of LDL, may help explain their efficacy in the treatment of atherosclerosis.

163 citations

Journal ArticleDOI
TL;DR: Results suggest that HO-1 functions as a suppressor of TNF-alpha signaling, not only by inhibiting the expression of adhesion molecules and generation of interleukin-6, but also by diminishing intracellular reactive oxygen species production and nuclear factor-kappaB activation in both cultured human tracheal smooth muscle cells and the airways of mice.
Abstract: Oxidative stresses are believed to play an important role in the induction of both cell adhesion molecules and pro-inflammatory cytokines, a key event in a variety of inflammatory processes. The enzyme heme oxygenase-1 (HO-1) functions as an antioxidant and serves to protect against tissue injury. In this study, we report that HO-1 was induced in cultured human tracheal smooth muscle cells after either treatment with a potent inducer of HO-1 activity, cobalt protoporphyrin IX, or infection with a recombinant adenovirus that carries the human HO-1 gene. Overexpression of HO-1 protected against tumor necrosis factor (TNF)-α-mediated airway inflammation via the down-regulation of oxidative stress, adhesion molecules, and interleukin-6 in both cultured human tracheal smooth muscle cells and the airways of mice. In addition, HO-1 overexpression inhibited TNF-α-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression, adherence of THP-1 cells, generation of interleukin-6, p47phox translocation, and nuclear factor-κB activation. HO-1 overexpression also attenuated TNF-α-induced oxidative stress, which was abrogated in the presence of both the HO-1 inhibitor, zinc protoporphyrin IX, as well as a carbon monoxide scavenger. In addition, HO-1 overexpression reduced the formation of a TNFR1/c-Src/p47phox complex. These results suggest that HO-1 functions as a suppressor of TNF-α signaling, not only by inhibiting the expression of adhesion molecules and generation of interleukin-6, but also by diminishing intracellular reactive oxygen species production and nuclear factor-κB activation in both cultured human tracheal smooth muscle cells and the airways of mice.

161 citations


Cited by
More filters
01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

Journal ArticleDOI
TL;DR: This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.

5,372 citations

Journal Article
TL;DR: A diagnosis of gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that is not clearly overt diabetes) or chemical-induced diabetes (such as in the treatment of HIV/AIDS or after organ transplantation)
Abstract: 1. Type 1 diabetes (due to b-cell destruction, usually leading to absolute insulin deficiency) 2. Type 2 diabetes (due to a progressive insulin secretory defect on the background of insulin resistance) 3. Gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that is not clearly overt diabetes) 4. Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young [MODY]), diseases of the exocrine pancreas (such as cystic fibrosis), and drugor chemical-induced diabetes (such as in the treatment of HIV/AIDS or after organ transplantation)

2,339 citations

Journal ArticleDOI
TL;DR: Current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications are summarized to contribute to the understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Abstract: Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.

1,699 citations

Journal ArticleDOI
TL;DR: The molecular, cellular, and vascular processes supporting the role of low ESS in the natural history of coronary atherosclerosis and vascular remodeling are explored and likely mechanisms concerning the different natural history trajectories of individual coronary lesions are indicated.

1,350 citations