scispace - formally typeset
Search or ask a question
Author

Yuhan Yao

Other affiliations: Peking University
Bio: Yuhan Yao is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Supernova & Population. The author has an hindex of 16, co-authored 71 publications receiving 759 citations. Previous affiliations of Yuhan Yao include Peking University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018, which can be used to study the shape and color evolution of the rising light curves in unprecedented detail.
Abstract: Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain their progenitor properties. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point spread function (PSF) photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night ($3g+3r$), all of the 127 SNe Ia are detected in both $g$ and $r$ band more than 10\,d (in the rest frame) prior to the epoch of $g$-band maximum light. The redshifts of these objects range from $z=0.0181$ to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14\,d prior to maximum light (in the rest frame), with a subset of 9 objects being detected more than 17\,d before $g$-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample, including one 02cx-like event ZTF18abclfee (SN\,2018crl), one Ia-CSM SN ZTF18aaykjei (SN\,2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN\,2018eul), ZTF18abdpvnd (SN\,2018dvf), ZTF18aawpcel (SN\,2018cir) and ZTF18abddmrf (SN\,2018dsx).

89 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino, which was identified as part of a systematic search for optical counterparts to high-energetic neutrinos with the Zwicky Transient Facility.
Abstract: Cosmic neutrinos provide a unique window into the otherwise-hidden mechanism of particle acceleration in astrophysical objects. A flux of high-energy neutrinos was discovered in 2013, and the IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multi-zone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for PeV neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly-relativistic outflows contribute to the cosmic neutrino flux.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino, which was identified as part of a systematic search for optical counterparts to high-energetic neutrinos with the Zwicky Transient Facility.
Abstract: Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux.

71 citations

Journal ArticleDOI
Mansi M. Kasliwal1, Shreya Anand1, Tomas Ahumada2, Robert Stein3, Ana Sagués Carracedo4, Igor Andreoni1, Michael W. Coughlin5, Michael W. Coughlin1, Leo Singer2, Leo Singer6, E. C. Kool4, Kaushik De1, Harsh Kumar7, Mouza Almualla8, Yuhan Yao1, Mattia Bulla4, Dougal Dobie9, Dougal Dobie10, Dougal Dobie11, Simeon Reusch3, Daniel A. Perley12, S. Bradley Cenko2, S. Bradley Cenko6, Varun Bhalerao7, David L. Kaplan13, Jesper Sollerman4, Ariel Goobar4, Chris M. Copperwheat12, Eric C. Bellm14, G. C. Anupama15, Alessandra Corsi16, Samaya Nissanke17, Ivan Agudo18, Ashot Bagdasaryan1, Sudhanshu Barway15, Justin Belicki1, Joshua S. Bloom19, Joshua S. Bloom20, Bryce Bolin1, David A. H. Buckley, Kevin B. Burdge1, Rick Burruss1, M. D. Caballero-Garcia, Chris Cannella1, A. J. Castro-Tirado21, A. J. Castro-Tirado18, David O. Cook1, Jeff Cooke11, Virginia Cunningham2, Aishwarya S. Dahiwale1, Kunal Deshmukh7, S. Dichiara2, S. Dichiara6, Dmitry A. Duev1, Anirban Dutta15, Michael Feeney1, Anna Franckowiak, Sara Frederick2, Christoffer Fremling1, Avishay Gal-Yam22, Pradip Gatkine2, Shaon Ghosh23, Daniel A. Goldstein1, V. Zach Golkhou14, Matthew J. Graham1, Melissa L. Graham1, M. Hankins1, George Helou1, Y. D. Hu24, Y. D. Hu18, Wing-Huen Ip25, Amruta Jaodand1, Viraj Karambelkar1, Albert K. H. Kong26, Marek Kowalski3, Maitreya Khandagale7, Shrinivas R. Kulkarni1, Brajesh Kumar15, Russ R. Laher1, Kwan-Lok Li26, Ashish Mahabal1, Frank J. Masci1, Adam A. Miller27, Adam A. Miller28, Moses Mogotsi, S. R. Mohite13, Kunal Mooley1, Przemek Mróz1, Jeffrey A. Newman29, Chow-Choong Ngeow25, S. R. Oates30, Atharva Sunil Patil25, Shashi B. Pandey31, M. Pavana15, Elena Pian32, Reed Riddle1, R. Sanchez-Ramirez, Yashvi Sharma1, Avinash Singh15, Roger Smith1, Maayane T. Soumagnac22, Maayane T. Soumagnac19, Kirsty Taggart12, Hanjie Tan25, Anastasios Tzanidakis1, Eleonora Troja6, Eleonora Troja2, A. F. Valeev33, Richard Walters1, G. Waratkar7, Sara Webb11, Po-Chieh Yu25, Bin-Bin Zhang34, Rongpu Zhou19, Jeffry Zolkower1 
TL;DR: In this article, the authors present a systematic search for optical counterparts to 13 GW triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3).
Abstract: We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg², median distance of 267Mpc and false alarm rates ranging from 1.5 yr⁻¹ to 10⁻²⁵ yr⁻¹. The ZTF coverage had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and 3 radio images. We find no promising kilonova (radioactivity-powered counterpart) and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bonafide astrophysical events regardless of false alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population, and later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day⁻¹ (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than 10⁻⁴ or o > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.

53 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Zwicky Transient Facility alert stream (ZTF) to detect Calcium-rich gap transients in the Census of the Local Universe (CLU) catalog.
Abstract: (Abridged) Using the Zwicky Transient Facility alert stream, we are conducting a large campaign to spectroscopically classify all transients occurring in galaxies in the Census of the Local Universe (CLU) catalog. The aim of the experiment is to construct a spectroscopically complete, volume-limited sample of transients coincident within 100" of CLU galaxies out to 200 Mpc, and to a depth of 20 mag. We describe the survey design and spectroscopic completeness from the first 16 months of operations. We present results from a systematic search for Calcium rich gap transients in the sample of 22 low luminosity (peak absolute magnitude $M > -17$), hydrogen poor events found in the experiment (out of 754 spectroscopically classified SNe). We report the detection of eight Calcium rich gap transients, and constrain their volumetric rate to be at least $\approx 15\pm5$% of the SN Ia rate. Combining this sample with ten events from the literature, we find a likely continuum of spectroscopic properties ranging from events with SN Ia-like features (Ca-Ia objects) to SN Ib/c-like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations of events distinguished by their red ($g - r \approx 1.5$ mag) or green ($g - r \approx 0.5$ mag) spectral colors at $r$-band peak, wherein redder events show strong line blanketing signatures, slower light curves, weaker He lines and lower [Ca II]/[O I] in the nebular phase. Together, we find that the spectroscopic continuum, volumetric rates and striking old environments are consistent with the explosive burning of He shells on low mass white dwarfs. We posit that Ca-Ia and red Ca-Ib/c objects are consistent with the double detonation of He shells with high He burning efficiency, while green Ca-Ib/c objects could arise from less efficient He burning scenarios such as detonations in low density He shells or He shell deflagrations.

50 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: AGILE as discussed by the authors is an ASI space mission developed with programmatic support by INAF and INFN, which includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Abstract: This program was supported by the the Kavli Foundation, Danish National Research Foundation, the Niels Bohr International Academy, and the DARK Cosmology Centre. The UCSC group is supported in part by NSF grant AST-1518052, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, generous donations from many individuals through a UCSC Giving Day grant, and from fellowships from the Alfred P. Sloan Foundation (R.J.F.), the David and Lucile Packard Foundation (R.J.F. and E.R.) and the Niels Bohr Professorship from the DNRF (E.R.). AMB acknowledges support from a UCMEXUS-CONACYT Doctoral Fellowship. Support for this work was provided by NASA through Hubble Fellowship grants HST-HF-51348.001 (B.J.S.) and HST-HF-51373.001 (M.R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This paper includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.r (AGILE) The AGILE Team thanks the ASI management, the technical staff at the ASI Malindi ground station, the technical support team at the ASI Space Science Data Center, and the Fucino AGILE Mission Operation Center. AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant No. I/028/12/2. We also thank INAF, Italian Institute of Astrophysics, and ASI, Italian Space Agency.r (ANTARES) The ANTARES Collaboration acknowledges the financial support of: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cite d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania;...

1,270 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe new optically thin solutions for rotating accretion flows around black holes and neutron stars, which are advection dominated, so that most of the viscously dissipated energy is advected radially with the flow.
Abstract: We describe new optically thin solutions for rotating accretion flows around black holes and neutron stars. These solutions are advection dominated, so that most of the viscously dissipated energy is advected radially with the flow. We model the accreting gas as a two temperature plasma and include cooling by bremsstrahlung, synchrotron, and Comptonization. We obtain electron temperatures $T_e\sim 10^{8.5}-10^{10}$K. The new solutions are present only for mass accretion rates $\dot M$ less than a critical rate $\dot M_{crit}$ which we calculate as a function of radius $R$ and viscosity parameter $\alpha$. For $\dot M<\dot M_{crit}$ we show that there are three equilibrium branches of solutions. One of the branches corresponds to a cool optically thick flow which is the well-known thin disk solution of Shakura \& Sunyaev (1973). Another branch corresponds to a hot optically thin flow, discovered originally by Shapiro, Lightman \& Eardley (1976, SLE). This solution is thermally unstable. The third branch corresponds to our new advection-dominated solution. This solution is hotter and more optically thin than the SLE solution, but is viscously and thermally stable. It is related to the ion torus model of Rees et al. (1982) and may potentially explain the hard X-ray and $\gamma$-ray emission from X-ray binaries and active galactic nuclei.

1,088 citations

Journal ArticleDOI
TL;DR: In this article, the authors present 39 candidate gravitational wave events from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15.00.
Abstract: We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15:00. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near real-time through GCN Notices and Circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of ~0.8, as well as events whose components could not be unambiguously identified as black holes or neutron stars. For the latter group, we are unable to determine the nature based on estimates of the component masses and spins from gravitational wave data alone. The range of candidate events which are unambiguously identified as binary black holes (both objects $\geq 3~M_\odot$) is increased compared to GWTC-1, with total masses from $\sim 14~M_\odot$ for GW190924_021846 to $\sim 150~M_\odot$ for GW190521. For the first time, this catalog includes binary systems with significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in ~26 weeks of data (~1.5 per week) is consistent with GWTC-1.

768 citations