scispace - formally typeset
Search or ask a question
Author

Yui Tomioka

Bio: Yui Tomioka is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Medicine & Agarose. The author has an hindex of 1, co-authored 1 publications receiving 20 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is revealed that the nuclear pore complex and nucleoporins are degraded by selective autophagy upon inactivation of Tor kinase complex 1 in Saccharomyces cerevisiae.
Abstract: The mechanisms underlying turnover of the nuclear pore complex (NPC) and the component nucleoporins (Nups) are still poorly understood. In this study, we found that the budding yeast Saccharomyces cerevisiae triggers NPC degradation by autophagy upon the inactivation of Tor kinase complex 1. This degradation largely depends on the selective autophagy-specific factor Atg11 and the autophagy receptor-binding ability of Atg8, suggesting that the NPC is degraded via receptor-dependent selective autophagy. Immunoelectron microscopy revealed that NPCs embedded in nuclear envelope-derived double-membrane vesicles are sequestered within autophagosomes. At least two pathways are involved in NPC degradation: Atg39-dependent nucleophagy (selective autophagy of the nucleus) and a pathway involving an unknown receptor. In addition, we found the interaction between Nup159 and Atg8 via the Atg8-family interacting motif is important for degradation of this nucleoporin not assembled into the NPC. Thus, this study provides the first evidence for autophagic degradation of the NPC and Nups, which we term "NPC-phagy" and "nucleoporinophagy."

40 citations

Journal ArticleDOI
TL;DR: A new Western blotting method of native proteins from agarose-based gel electrophoresis using a buffer at pH 6.1 containing basic histidine and acidic 2-(N-morpholino)ethanesulfonic acid successfully provided native structures for a variety of proteins and macromolecular complexes.
Abstract: We have developed a new Western blotting method of native proteins from agarose-based gel electrophoresis using a buffer at pH 6.1 containing basic histidine and acidic 2-(N-morpholino)ethanesulfonic acid. This gel electrophoresis successfully provided native structures for a variety of proteins and macromolecular complexes. This paper is focused on the Western blotting of native protein bands separated on agarose gels. Two blotting methods from agarose gel to PVDF membrane are introduced here, one by contact (diffusion) blotting and another by electroblotting after pre-treating the agarose gels with SDS. The contact blotting resulted in the transfer of native GFP, native human plexin domain containing protein 2 (PLXDC2) and native SARS-CoV-2 spike protein, which were detected by conformation-specific antibodies generated in-house.

7 citations

Book ChapterDOI
TL;DR: In this article , a protocol for vertical and horizontal formats of agarose native gel electrophoresis is described followed by different staining procedures, which can be applied to specific cases and the advantages or caveats of the present technology.
Abstract: Electrophoresis is one of the most important analytical technologies for characterization of macromolecules and their interactions. Among them, native gel electrophoresis is used to analyze the macromolecules in the native structure. It differs in principle and information from those obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) or blue native polyacrylamide gel electrophoresis (BN-PAGE). SDS-PAGE is carried out in the presence of strong denaturant, SDS, while BN-PAGE is done in the presence of negatively charged dye, e.g., Coomassie brilliant blue, G-250. Here, we describe native gel electrophoresis using agarose gel and a buffer at pH 6.1 composed of histidine and 2-(N-morpholino) ethanesulfonic acid. First, a protocol for vertical and horizontal formats of agarose native gel electrophoresis is described followed by different staining procedures. Then, various examples obtained using the developed procedure will be shown to demonstrate how the technology can be applied to specific cases and the advantages or caveats of the present technology.

7 citations

Journal ArticleDOI
TL;DR: In this article , a commercially available bovine serum albumin (BSA) was examined by agarose native gel electrophoresis using two different agaroses sources, UltraPure and MetaPhor.

5 citations

Journal ArticleDOI
TL;DR: Based on the combined procedures, conformation-specific monoclonal antibodies against PLXDC2 and SARS-CoV-2 spike protein were discovered and green fluorescent protein showed functional state both on agarose gel and blotted membrane.
Abstract: In this study, we review the agarose native gel electrophoresis that separates proteins and macromolecular complexes in their native state and transfer of the separated proteins from the agarose gel to membranes by contact blotting which retains the native state of these structures. Green fluorescent protein showed functional state both on agarose gel and blotted membrane. Based on the combined procedures, we discovered conformation-specific monoclonal antibodies against PLXDC2 and SARS-CoV-2 spike protein.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The activation of autophagy is essential for prolonging life and suppressing aging, and this article provides a comprehensive review of the role ofAutophagy in health, physiological function, and Autophagy-related disease.
Abstract: Autophagy refers to the process involving the decomposition of intracellular components via lysosomes. Autophagy plays an important role in maintaining and regulating cell homeostasis by degrading intracellular components and providing degradation products to cells. In vivo, autophagy has been shown to be involved in the starvation response, intracellular quality control, early development, and cell differentiation. Recent studies have revealed that autophagy dysfunction is implicated in neurodegenerative diseases and tumorigenesis. In addition to the discovery of certain disease-causing autophagy-related mutations and elucidation of the pathogenesis of conditions resulting from the abnormal degradation of selective autophagy substrates, the activation of autophagy is essential for prolonging life and suppressing aging. This article provides a comprehensive review of the role of autophagy in health, physiological function, and autophagy-related disease.

104 citations

Journal ArticleDOI
TL;DR: This work highlights the four most prominent protein modifications – phosphorylation, ubiquitination, acetylation and oligomerisation – that are essential for autophagy receptor recruitment, function and turnover.
Abstract: Autophagy is a highly conserved catabolic process cells use to maintain their homeostasis by degrading misfolded, damaged, and excessive proteins, non-functional organelles, foreign pathogens, and other cellular components. Hence, autophagy can be non-selective, where bulky portions of the cytoplasm are degraded upon stress, or a highly selective process, where pre-selected cellular components are degraded. To distinguish between different cellular components, autophagy employs selective autophagy receptors, which will link the cargo to the autophagy machinery, thereby sequestering it in the autophagosome for its subsequent degradation in the lysosome. Autophagy receptors undergo post-translational and structural modifications to fulfil their role in autophagy, or upon executing their role, for their own degradation. We highlight the four most prominent protein modifications - phosphorylation, ubiquitination, acetylation, and oligomerisation - that are essential for autophagy receptor recruitment, function, and turnover. Understanding the regulation of selective autophagy receptors will provide deeper insights into the pathway and open up potential therapeutic avenues.

75 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons and postmortem human motor cortex before the emergence of Nup alterations.
Abstract: Alterations in the components [nucleoporins (Nups)] and function of the nuclear pore complex (NPC) have been implicated as contributors to the pathogenesis of genetic forms of neurodegeneration including C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). We hypothesized that Nup alterations and the consequential loss of NPC function may lie upstream of TDP-43 dysfunction and mislocalization widely observed in ALS, FTD, and related neurodegenerative diseases. Here, we provide evidence that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons (iPSNs) and postmortem human motor cortex before the emergence of Nup alterations. Inhibiting the nuclear export of CHMP7 triggered Nup reduction and TDP-43 dysfunction and pathology in human neurons. Knockdown of CHMP7 alleviated disease-associated Nup alterations, deficits in Ran GTPase localization, defects in TDP-43-associated mRNA expression, and downstream glutamate-induced neuronal death. Thus, our data support a role for altered CHMP7-mediated Nup homeostasis as a prominent initiating pathological mechanism for familial and sporadic ALS and highlight the potential for CHMP7 as therapeutic target.

41 citations

Journal ArticleDOI
TL;DR: ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Abstract: ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.

30 citations

Journal ArticleDOI
TL;DR: It is demonstrated that nuclear envelope–vacuole interactions expand in response to perturbed NPC assembly to promote viability, nuclear envelope remodeling, and proper NPC biogenesis.
Abstract: The intricacy of nuclear pore complex (NPC) biogenesis imposes risks of failure that can cause defects in nuclear transport and nuclear envelope (NE) morphology; however, cellular mechanisms used to alleviate NPC assembly stress are not well defined. In the budding yeast Saccharomyces cerevisiae, we demonstrate that NVJ1- and MDM1-enriched NE-vacuole contacts increase when NPC assembly is compromised in several nup mutants, including nup116ΔGLFG cells. These interorganelle nucleus-vacuole junctions (NVJs) cooperate with lipid droplets to maintain viability and enhance NPC formation in assembly mutants. Additionally, NVJs function with ATG1 to remodel the NE and promote vacuole-dependent degradation of specific nucleoporins in nup116ΔGLFG cells. Importantly, NVJs significantly improve the physiology of NPC assembly mutants, despite having only negligible effects when NPC biogenesis is unperturbed. These results therefore define how NE-vacuole interorganelle contacts coordinate responses to mitigate deleterious cellular effects caused by disrupted NPC assembly.

18 citations