scispace - formally typeset
Search or ask a question
Author

Yuichiro Asakura

Other affiliations: Osaka University
Bio: Yuichiro Asakura is an academic researcher from Nagoya University. The author has contributed to research in topics: Gravitational microlensing & Light curve. The author has an hindex of 26, co-authored 73 publications receiving 2798 citations. Previous affiliations of Yuichiro Asakura include Osaka University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012, and determine the survey sensitivity as a function of planet star mass ratio, q, and projected planet star separation, s, in Einstein radius units.
Abstract: We report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012. We determine the survey sensitivity as a function of planet star mass ratio, q, and projected planet star separation, s, in Einstein radius units. We find that the mass-ratio function is not a single power law, but has a change in slope at q approx.10(exp -4), corresponding to approx. 20 Stellar Mass for the median host-star mass of approx. 0.6 M. We find significant planetary signals in 23 of the 1474 alert events that are well-characterized by the MOA-II survey data alone. Data from other groups are used only to characterize planetary signals that have been identified in the MOA data alone. The distribution of mass ratios and separations of the planets found in our sample are well fit by a broken power-law model. We also combine this analysis with the previous analyses of Gould et al. and Cassan et al., bringing the total sample to 30 planets. The unbroken power-law model is disfavored with a p-value of 0.0022, which corresponds to a Bayes factor of 27 favoring the broken power-law model. These results imply that cold Neptunes are likely to be the most common type of planets beyond the snow line.

227 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger.
Abstract: Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected material from the NS merger, we perform radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger. We find that the observed near-infrared emission lasting for >10 d is explained by 0.03 M⊙ of ejecta containing lanthanide elements. However, the blue optical component observed at the initial phases requires an ejecta component with a relatively high electron fraction (Ye). We show that both optical and near-infrared emissions are simultaneously reproduced by the ejecta with a medium Ye of ∼0.25. We suggest that a dominant component powering the emission is post-merger ejecta, which exhibits that the mass ejection after the first dynamical ejection is quite efficient. Our results indicate that NS mergers synthesize a wide range of r-process elements and strengthen the hypothesis that NS mergers are the origin of r-process elements in the Universe.

216 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012, finding significant planetary signals in 23 of the 1474 alert events that are well characterized by the MOA II survey data alone, and combine this analysis with the previous analyses of Gould et al. and Cassan et al., bringing the total sample to 30 planets.
Abstract: We report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012. We determine the survey sensitivity as a function of planet-star mass ratio, $q$, and projected planet-star separation, $s$, in Einstein radius units. We find that the mass ratio function is not a single power-law, but has a change in slope at $q \sim 10^{-4}$, corresponding to $\sim 20 M_{\oplus}$ for the median host star mass of $\sim 0.6 M_{\odot}$. We find significant planetary signals in 23 of the 1474 alert events that are well characterized by the MOA-II survey data alone. Data from other groups are used only to characterize planetary signals that have been identified in the MOA data alone. The distribution of mass ratios and separations of the planets found in our sample are well fit by a broken power-law model of the form $dN_{\rm pl}/(d{\rm log} q\ d{\rm log} s) = A (q/q_{\rm br})^n s^m \, {\rm dex}^{-2}$ for $q > q_{\rm br}$ and $dN_{\rm pl}/(d{\rm log} q\ d{\rm log} s) = A (q/q_{\rm br})^p s^m \, {\rm dex}^{-2}$ for $q < q_{\rm br}$, where $q_{\rm br}$ is the mass ratio of the break. We also combine this analysis with the previous analyses of Gould et al. and Cassan et al., bringing the total sample to 30 planets. This combined analysis yields $A = 0.61^{+0.21}_{-0.16}$, $n =-0.93\pm 0.13$, $m = 0.49_{-0.49}^{+0.47}$ and $p = 0.6^{+0.5}_{-0.4}$ for $q_{\rm br}\equiv 1.7\times 10^{-4}$. The unbroken power law model is disfavored with a $p$-value of 0.0022, which corresponds to a Bayes factor of 27 favoring the broken power-law model. These results imply that cold Neptunes are likely to be the most common type of planets beyond the snow line.

196 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed elemental abundance study of 90 F and G dwarfs, turn-off, and subgiant stars in the Galactic bulge has been presented, based on high-resolution spectra acquired during gravitational microlensing events.
Abstract: We present a detailed elemental abundance study of 90 F and G dwarf, turn-off, and subgiant stars in the Galactic bulge. Based on high-resolution spectra acquired during gravitational microlensing events, stellar ages and abundances for 11 elements (Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Zn, Y and Ba) have been determined. Four main findings are presented: (1) a wide metallicity distribution with distinct peaks at [Fe/H] = -1.09, -0.63, -0.20, + 0.12, + 0.41; (2) a highfraction of intermediate-age to young stars where at [Fe/H] > 0 more than 35% are younger than 8 Gyr, and for [Fe/H] ≲-0.5 most stars are 10 Gyr or older; (3) several episodes of significant star formation in the bulge has been identified: 3, 6, 8, and 11 Gyr ago; (4) tentatively the "knee" in the α-element abundance trends of the sub-solar metallicity bulge is located at a slightly higher [Fe/H] than in the local thick disk. These findings show that the Galactic bulge has complex age and abundance properties that appear to be tightly connected to the main Galactic stellar populations. In particular, the peaks in the metallicity distribution, the star formation episodes, and the abundance trends, show similarities with the properties of the Galactic thin and thick disks. At the same time, the star formation rate appears to have been slightly faster in the bulge than in the local thick disk, which most likely is an indication of the denser stellar environment closer to the Galactic centre. There are also additional components not seen outside the bulge region, and that most likely can be associated with the Galactic bar. Our results strengthen the observational evidence that support the idea of a secular origin for the Galactic bulge, formed out of the other main Galactic stellar populations present in the central regions of our Galaxy. Additionally, our analysis of this enlarged sample suggests that the (V-I)0 colour of the bulge red clump should be revised to 1.09. (Less)

175 citations

Journal ArticleDOI
TL;DR: In this paper, the Japanese collaboration for gravitational wave electro-magnetic (J-GEM) follow-up observations of SSS17a, an electromagnetic counterpart of GW170817, showed a 2.5mag decline in the z band during the period between 1.7 and 7.7 d after the merger.
Abstract: GW170817 is the first detected gravitational wave source from a neutron star merger. We present the Japanese collaboration for gravitational-wave electro-magnetic (J-GEM) follow-up observations of SSS17a, an electromagnetic counterpart of GW170817. SSS17a shows a 2.5mag decline in the z band during the period between 1.7 and 7.7 d after the merger. Such a rapid decline is not comparable with supernovae light curves at any epoch. The color of SSS17a also evolves rapidly and becomes redder during later epochs: the z - H color has changed by approximately 2.5mag during the period between 0.7 and 7.7 d. The rapid evolutions of both the color and the optical brightness are consistent with the expected properties of a kilonova that is powered by the radioactive decay of newly synthesized r-process nuclei. Kilonova models with Lanthanide elements can reproduce the aforementioned observed properties well, which suggests that r-process nucleosynthesis beyond the second peak takes place in SSS17a. However, the absolute magnitude of SSS17a is brighter than the expected brightness of the kilonova models with an ejectamass of 0.01M(circle dot), which suggests a more intensemass ejection (similar to 0.03M(circle dot)) or possibly an additional energy source.

174 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations

Journal ArticleDOI
TL;DR: In this paper, the interpretation of the UV/optical/infrared counterpart of GW170817 with kilonova models, combined with new numerical relativity results, imply a complementary lower bound on the tidal deformability parameter.
Abstract: Gravitational waves detected from the binary neutron star (NS) merger GW170817 constrained the NS equation of state by placing an upper bound on certain parameters describing the binary's tidal interactions. We show that the interpretation of the UV/optical/infrared counterpart of GW170817 with kilonova models, combined with new numerical relativity results, imply a complementary lower bound on the tidal deformability parameter. The joint constraints tentatively rule out both extremely stiff and soft NS equations of state.

503 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculate the evolution of heavy element abundances from C to Zn in the solar neighborhood adopting their new nucleosynthesis yields, based on the light curve and spectra fitting of individual supernovae.
Abstract: We calculate the evolution of heavy element abundances from C to Zn in the solar neighborhood adopting our new nucleosynthesis yields. Our yields are calculated for wide ranges of metallicity (Z=0-Z_\odot) and the explosion energy (normal supernovae and hypernovae), based on the light curve and spectra fitting of individual supernovae. The elemental abundance ratios are in good agreement with observations. Among the alpha-elements, O, Mg, Si, S, and Ca show a plateau at [Fe/H] < -1, while Ti is underabundant overall. The observed abundance of Zn ([Zn/Fe] ~ 0) can be explained only by the high energy explosion models, which requires a large contribution of hypernovae. The observed decrease in the odd-Z elements (Na, Al, and Cu) toward low [Fe/H] is reproduced by the metallicity effect on nucleosynthesis. The iron-peak elements (Cr, Mn, Co, and Ni) are consistent with the observed mean values at -2.5 < [Fe/H] < -1$, and the observed trend at the lower metallicity can be explained by the energy effect. We also show the abundance ratios and the metallicity distribution functions of the Galactic bulge, halo, and thick disk. Our results suggest that the formation timescale of the thick disk is ~ 1-3 Gyr.

500 citations