scispace - formally typeset
Search or ask a question
Author

Yuichiro Hagiya

Bio: Yuichiro Hagiya is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Protoporphyrin IX & Heme. The author has an hindex of 17, co-authored 28 publications receiving 1254 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Basic aspects of PDT, PDT and photodynamic diagnosis for digestive cancer from the point of view of a clinical doctor, and, finally, future trends are focused on.
Abstract: One of the long-standing goals of both researchers and oncologists is to establish a framework for the complete cure of cancer with less toxic adverse effect and improved quality of life (QOL) for patients. PDT (photodynamic therapy) has much attracted as less invasive method for treating cancer. The therapeutic properties of light have been known for thousands of years, but it was only in the last century that PDT was developed. The field on PDT is now so large. Here, we will focus on a few basic aspects such as porphyrinoid photosensitizers, non-porphyrinoid photosensitizers, 5-aminolevulinic acid and its derivatives, fullerenes as efficient photosensitizers, and, PDT and photodynamic diagnosis (PDD) for digestive cancer from the point of view of a clinical doctor, and, finally, future trends.

446 citations

Journal ArticleDOI
TL;DR: The historical background and discovery of the ATP-driven xenobiotic export pumps encoded by MRP genes, biological functions of ABC transporters belonging to the MRP class, and regulation of gene expression of MRPs by oxidative stress are addressed.
Abstract: 1. The adenosine triphosphate (ATP) binding cassette (ABC) transporters form one of the largest protein families encoded in the human genome, and more than 48 genes encoding human ABC transporters have been identified and sequenced. It has been reported that mutations of ABC protein genes are causative in several genetic disorders in humans. 2. Many human ABC transporters are involved in membrane transport of drugs, xenobiotics, endogenous substances or ions, thereby exhibiting a wide spectrum of biological functions. According to the new nomenclature of human ABC transporter genes, the 'ABCC' gene sub-family comprises three classes involving multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and a cystic fibrosis transmembrane conductance regulator (CFTR). 3. Molecular cloning studies have identified a total of ten members of the human MRP class including ABCC11, ABCC12, and ABCC13 (pseudo-gene) that have recently been characterized. 4. This review addresses the historical background and discovery of the ATP-driven xenobiotic export pumps (GS-X pumps) encoded by MRP genes, biological functions of ABC transporters belonging to the MRP class, and regulation of gene expression of MRPs by oxidative stress.

117 citations

Journal Article
TL;DR: A real-time PCR primer set was created to quantitatively investigate the induction of human ABC transporters by a redox-active compound tert-butylhydroquinone (tBHQ) in HepG2 cells and found that mRNA levels of ABCC1, ABCC2, ABCc3, and ABCG2 were significantly elevated in dose- and time-dependent manners.
Abstract: Nrf2, an NF-E2-related transcription factor, plays a critical role in transcriptional upregulation of many target genes, including those for metabolizing enzymes and transporters essential for cellular defense in response to oxidative and/or electrophilic stress. In the present study, we have studied the potential involvement of Nrf2 in induction of human ABC transporter genes under oxidative stress. We created a real-time PCR primer set to quantitatively investigate the induction of human ABC transporters by a redox-active compound tert-butylhydroquinone (tBHQ) in HepG2 cells. We found that mRNA levels of ABCC1, ABCC2, ABCC3, and ABCG2 were significantly elevated in dose- and time-dependent manners. Translocation of Nrf2 into the nuclei occurred concomitantly with the induction of ABCC1 and ABCC2 as well as both heavy and light chains of gamma-glutamylcysteine synthetase (gamma-GCSh and gamma-GCSI) during tBHQ treatments. To examine the potential involvement of Nrf2 in upregulation of the ABC transporters, we treated cells with siRNA to knockdown the expression of Nrf2. Under such Nrf2-knockdown conditions, tBHQ-induced mRNA levels of ABCC2 and ABCG2 were significantly suppressed as were mRNA levels of gamma-GCSh and gamma-GCSI. Interestingly, however, the elevated mRNA level of ABCC1 was little affected by Nrf2 siRNA treatment. We also addressed the involvement of Keap1, which is a negative regulator of Nrf2 by retrieving it in the cytoplasm. When HepG2 cells were treated with Keap1-specifc siRNA, a significant increase was observed in mRNA levels of ABCC1, ABCC2, and ABCG2 as well as gamma-GCSI, suggesting that induction of ABCC2 and ABCG2 by tBHQ is mediated by the Nrf2/Keap1 system, whereas the induction of ABCC1 may involve a Keap1-dependent but Nrf2-independent mechanism.

107 citations

Journal ArticleDOI
TL;DR: PEPT1 and ABCG2 are key players in regulating intracellular PpIX levels and determining the efficacy of ALA-based photocytotoxicity against gastric cancer cells in vitro.

92 citations

Journal ArticleDOI
TL;DR: The induction of PEPT1 gene and the suppression of ABCG2 gene expression are among the key molecular mechanisms underlying tumor-specific PpIX accumulation after the administration of ALA in bladder cancer.

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergy therapy.
Abstract: The complexity, diversity, and heterogeneity of tumors seriously undermine the therapeutic potential of treatment. Therefore, the current trend in clinical research has gradually shifted from a focus on monotherapy to combination therapy for enhanced treatment efficacy. More importantly, the cooperative enhancement interactions between several types of monotherapy contribute to the naissance of multimodal synergistic therapy, which results in remarkable superadditive (namely “1 + 1 > 2”) effects, stronger than any single therapy or their theoretical combination. In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergistic therapy as well as the intensive exploration of the underlying synergistic mechanisms for explaining the significant improvements in synergistic therapeutic outcome. Furtherm...

1,220 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of transporters of the solute carrier family (SLC) is provided with regard to tissue distribution, subcellular localization, and substrate preferences.
Abstract: Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.

717 citations

01 Sep 2014
TL;DR: It is found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation.
Abstract: Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.

507 citations

Journal ArticleDOI
TL;DR: Basic aspects of PDT, PDT and photodynamic diagnosis for digestive cancer from the point of view of a clinical doctor, and, finally, future trends are focused on.
Abstract: One of the long-standing goals of both researchers and oncologists is to establish a framework for the complete cure of cancer with less toxic adverse effect and improved quality of life (QOL) for patients. PDT (photodynamic therapy) has much attracted as less invasive method for treating cancer. The therapeutic properties of light have been known for thousands of years, but it was only in the last century that PDT was developed. The field on PDT is now so large. Here, we will focus on a few basic aspects such as porphyrinoid photosensitizers, non-porphyrinoid photosensitizers, 5-aminolevulinic acid and its derivatives, fullerenes as efficient photosensitizers, and, PDT and photodynamic diagnosis (PDD) for digestive cancer from the point of view of a clinical doctor, and, finally, future trends.

446 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the prophylactic and non-prolific approaches used in the treatment of central nervous system disorders and their applications in women and young people.
Abstract: for Diagnostics and Therapeutics Sunaina Singh,*,†,∥ Amit Aggarwal,*,†,∥ N. V. S. Dinesh K. Bhupathiraju,*,‡ Gianluca Arianna,‡ Kirran Tiwari,‡ and Charles Michael Drain‡,§ †Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States ‡Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States The Rockefeller University, New York, New York 10065, United States

405 citations