scispace - formally typeset
Search or ask a question
Author

Yuki Nakanishi

Bio: Yuki Nakanishi is an academic researcher from Nagoya University. The author has contributed to research in topics: Seebeck coefficient & Gene. The author has an hindex of 2, co-authored 3 publications receiving 822 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The present approach using a 2DEG provides a new route to realize practical thermoelectric materials without the use of toxic heavy elements and enhances the Seebeck coefficient without reducing the electrical conductivity.
Abstract: Enhancement of the Seebeck coefficient (S ) without reducing the electrical conductivity (sigma) is essential to realize practical thermoelectric materials exhibiting a dimensionless figure of merit (ZT=S2 x sigma x T x kappa-1) exceeding 2, where T is the absolute temperature and kappa is the thermal conductivity. Here, we demonstrate that a high-density two-dimensional electron gas (2DEG) confined within a unit cell layer thickness in SrTiO(3) yields unusually large |S|, approximately five times larger than that of SrTiO(3) bulks, while maintaining a high sigma2DEG. In the best case, we observe |S|=850 microV K-1 and sigma2DEG=1.4 x 10(3) S cm-1. In addition, by using the kappa of bulk single-crystal SrTiO(3) at room temperature, we estimate ZT approximately 2.4 for the 2DEG, corresponding to ZT approximately 0.24 for a complete device having the 2DEG as the active region. The present approach using a 2DEG provides a new route to realize practical thermoelectric materials without the use of toxic heavy elements.

850 citations

Journal ArticleDOI
TL;DR: This work investigated the expression of both genes in relation to the pre- and post-hatching development, diurnal cycle and feeding state in the livers of chicken and Japanese quail, and found that feeding stimulation was a critical factor inducing Lb-FABP gene expression irrespective of light condition.
Abstract: In avian species, two types of intracellular lipid-binding proteins are abundant in the liver, the liver fatty acid-binding protein (L-FABP) and the liver basic fatty acid-binding protein (Lb-FABP). Both FABPs are capable of forming complexes with free fatty acids and bile acids, but the functional distinction between L-FABP and Lb-FABP in avian liver is not fully understood. To gain insights into the functional distinction between L-FABP and Lb-FABP, we investigated the expression of both genes in relation to the pre- and post-hatching development, diurnal cycle and feeding state in the livers of chicken (Gallus gallus) and Japanese quail (Coturnix japonica). In chickens, the Lb-FABP mRNA was expressed only in the liver, while the L-FABP was expressed in both liver and intestinal tissues. Only small amounts of the L-FABP and Lb-FABP mRNAs were detected in the liver during chicken embryogenesis, but at the onset of hatching a dramatic increase in mRNA expression was observed for both genes, suggesting that the expression of the L-FABP and Lb-FABP genes is synchronized at developmental stages. Remarkably, the diurnal expression pattern differed between the two genes under a 16L:8D condition in sexually mature quail: L-FABP gene expression transiently increased at the end of the light cycle, whereas Lb-FABP gene expression peaked during the early part of the light cycle and gradually decreased as the dark period approached. We attempted to identify the factors regulating the diurnal gene expression pattern, and found that feeding stimulation was a critical factor inducing Lb-FABP gene expression irrespective of light condition. On the other hand, feeding stimulation only slightly stimulated expression of the L-FABP gene, and was not always its primary determinant. These results suggest that L-FABP and Lb-FABP play different roles in metabolic process during the postprandial state.

24 citations

Journal ArticleDOI
TL;DR: In this paper, BaTiO3/SrTiOO3:Nb superlattice films were fabricated by a pulsed laser deposition (PLD) method on (001)-face of LaAlO3 single crystal substrate at 900°C.
Abstract: Very recently, we have found that the high density 2DEG (n e ∼1021 cm−3), which is confined within a unit cell layer thickness of SrTiO3, exhibits unusually large Seebeck coefficient (S 2DEG/S bulk ∼5)[1]. In the optimum, extremely high ZT 2DEG of ∼2.4 can be obtained at room temperature, while the effective ZT eff. was only ∼0.24 because 9 unit cells of electrically insulating SrTiO3 layers were used to fabricate the 2DEG structure. Thus, high ZT eff can be realized if the insulating layer thickness is reduced significantly. We selected BaTiO3∼SrTiO3:Nb superlattice to reduce insulating layer thickness because dielectric constant of BaTiO3 is one order of magnitude large (∼3,000) as compared to that of SrTiO3 (∼300). We expected that the conduction electrons can be confined much strongly in the SrTiO3:Nb layer by sandwiching between highly dielectric BaTiO3 layers. As a result, we clarified that the critical BaTiO3 layer thickness is 1.2 nm, significantly small as compared to SrTiO3 layer (4 nm). The BaTiO3/SrTiO3:Nb superlattice films were fabricated by a pulsed laser deposition (PLD) method on (001)-face of LaAlO3 single crystal substrate at 900°C. During the film growth, we monitored RHEED intensity oscillation to control layer thickness precisely. Out-of-plane high-resolution X-ray diffraction measurements and cross sectional HAADF-STEM observations revealed that the resultant films were high quality BaTiO3/SrTiO3:Nb superlattice. Hall mobility of the SrTiO3:Nb layer was 0.4 cm2·V−1·s−1, while that of superlattice decreased gradually with increasing BaTiO3 layer thickness most likely due to that intra layer diffusion of Ba2+ ion occurred between BaTiO3 and SrTiO3:Nb layers[2], which was clearly observed by the EELS mapping. Seebeck coefficient |S|300K of SrTiO3:Nb layer was 57 μV·K−1, which corresponds carrier concentration n e of 5×1021 cm−3. The |S|300K value became large with decreasing the SrTiO3:Nb layer thickness (d SrTiO3:Nb) and it reached 305 μV·K−1, which is approximately 5 times larger than that of SrTiO3:Nb bulk. The slope of log |S|- log d SrTiO3:Nb plots was 1/2, suggesting that quantum size effect occurred. Critical BaTiO3 layer thickness for the quantum confinement of the electrons was 1.2 nm (3 unit cells of BaTiO3), which is significantly small as compared to SrTiO3 (4 nm). Thus, BaTiO3/SrTiO3:Nb superlattice would be a promising candidate to realize high ZT eff.

Cited by
More filters
Journal ArticleDOI
TL;DR: It is discovered that the thermoconductivity of the silicon nanowires can be significantly reduced due to phonon scattering, pointing to a very promising approach to design better thermoelectrical materials.
Abstract: Semiconductor nanowires represent an important class of nanostructure building block for photovoltaics as well as direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of solar energy harvesting. In addition, we have also discovered that the thermoconductivity of the silicon nanowires can be significantly reduced due to phonon scattering, pointing to a very promising approach to design better thermoelectrical materials. It is important to note that the engines that generate most of the world's power typically operate at only 30–40 per cent efficiency, releasing roughly 15 terawatts of heat to the environment. If this “wasted heat” could be recycled, the impact globally would be enormous. Our silicon nanowire thermoelectric technology could have a significant impact in alternative energy generation.

1,306 citations

Journal ArticleDOI
TL;DR: In this article, the formation and electronic properties of various MXene systems, M 2 C (M = Sc, Ti, V, Cr, Zr, Nb, Ta), M 2 N (M 2 N), with surfaces chemically functionalized by F, OH, and O groups, are examined.
Abstract: Layered MAX phases are exfoliated into 2D single layers and multilayers, so-called MXenes. Using fi rst-principles calculations, the formation and electronic properties of various MXene systems, M 2 C (M = Sc, Ti, V, Cr, Zr, Nb, Ta) and M 2 N (M = Ti, Cr, Zr) with surfaces chemically functionalized by F, OH, and O groups, are examined. Upon appropriate surface functionalization, Sc 2 C, Ti 2 C, Zr 2 C, and Hf 2 C MXenes are expected to become semiconductors. It is also derived theoretically that functionalized Cr 2 C and Cr 2 N MXenes are magnetic. Thermoelectric calculations based on the Boltzmann theory imply that semiconducting MXenes attain very large Seebeck coeffi cients at low temperatures.

1,288 citations

Journal ArticleDOI
TL;DR: This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics.
Abstract: The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost-effective, pollution-free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10-15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data--especially related to materials--have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts.

1,268 citations

Journal ArticleDOI
26 Mar 2010-Science
TL;DR: The state of the art of this emerging field of electronics is traced and some of the challenges and pitfalls that may lie ahead are discussed.
Abstract: Extraordinary electron systems can be generated at well-defined interfaces between complex oxides. In recent years, progress has been achieved in exploring and making use of the fundamental properties of such interfaces, and it has become clear that these electron systems offer the potential for possible future devices. We trace the state of the art of this emerging field of electronics and discuss some of the challenges and pitfalls that may lie ahead.

1,189 citations

Journal ArticleDOI
TL;DR: This review aims to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics.
Abstract: The long-standing popularity of thermoelectric materials has contributed to the creation of various thermoelectric devices and stimulated the development of strategies to improve their thermoelectric performance. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics, including structural design (point defects, dislocations, interfaces, inclusions, and pores), multidimensional design (quantum dots/wires, nanoparticles, nanowires, nano- or microbelts, few-layered nanosheets, nano- or microplates, thin films, single crystals, and polycrystalline bulks), and advanced device design (thermoelectric modules, miniature generators and coolers, and flexible thermoelectric generators). The outline of each strategy starts with a concise presentation of their fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of thermoelectric materials and devices. Overall, this review will serve to help materials scientists, chemists, and physicists, particularly students and young researchers, in selecting suitable strategies for the improvement of thermoelectrics and potentially other relevant energy conversion technologies.

951 citations