scispace - formally typeset
Search or ask a question
Author

Yukiko Gotoh

Bio: Yukiko Gotoh is an academic researcher from University of Tokyo. The author has contributed to research in topics: MAP kinase kinase kinase & Mitogen-activated protein kinase kinase. The author has an hindex of 80, co-authored 165 publications receiving 29656 citations. Previous affiliations of Yukiko Gotoh include Boston Children's Hospital & Harvard University.


Papers
More filters
Journal ArticleDOI
17 Oct 1997-Cell
TL;DR: It is shown that growth factor activation of the PI3'K/Akt signaling pathway culminates in the phosphorylation of the BCL-2 family member BAD, thereby suppressing apoptosis and promoting cell survival.

5,831 citations

Journal ArticleDOI
03 Jan 1997-Science
TL;DR: Overexpression of ASK1 induced apoptotic cell death, andASK1 was activated in cells treated with tumor necrosis factor-α, and TNF-α-induced apoptosis was inhibited by a catalytically inactive form of AsK1.
Abstract: Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.

2,264 citations

Journal ArticleDOI
01 Dec 1995-Science
TL;DR: The phosphorylation of the human estrogen receptor (ER) serine residue at position 118 is required for full activity of the ER activation function 1 (AF-1), which is modulated by the phosphorylated Ser118 through the Ras-MAPK cascade of the growth factor signaling pathways.
Abstract: The phosphorylation of the human estrogen receptor (ER) serine residue at position 118 is required for full activity of the ER activation function 1 (AF-1). This Ser118 is phosphorylated by mitogen-activated protein kinase (MAPK) in vitro and in cells treated with epidermal growth factor (EGF) and insulin-like growth factor (IGF) in vivo. Overexpression of MAPK kinase (MAPKK) or of the guanine nucleotide binding protein Ras, both of which activate MAPK, enhanced estrogen-induced and antiestrogen (tamoxifen)-induced transcriptional activity of wild-type ER, but not that of a mutant ER with an alanine in place of Ser118. Thus, the activity of the amino-terminal AF-1 of the ER is modulated by the phosphorylation of Ser118 through the Ras-MAPK cascade of the growth factor signaling pathways.

1,967 citations

Journal ArticleDOI
TL;DR: The MAP kinase cascade appears to be conserved during evolution and thus might play an essential role in diverse intracellular signaling processes from yeasts to vertebrates.

1,056 citations

Journal ArticleDOI
TL;DR: It is suggested that Akt enhances the ubiquitination-promoting function of Mdm2 by phosphorylation of Ser186, which results in reduction of p53 protein.

618 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
TL;DR: Rapid progress that has recently improved the understanding of the molecular mechanisms that mediate TLR signalling is reviewed.
Abstract: One of the mechanisms by which the innate immune system senses the invasion of pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific molecular patterns that are present in microbial components. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also instructs the development of antigen-specific acquired immunity. Here, we review the rapid progress that has recently improved our understanding of the molecular mechanisms that mediate TLR signalling.

7,906 citations

Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
19 Mar 1999-Cell
TL;DR: It is demonstrated that Akt also regulates the activity of FKHRL1, a member of the Forkhead family of transcription factors, which triggers apoptosis most likely by inducing the expression of genes that are critical for cell death, such as the Fas ligand gene.

6,481 citations