scispace - formally typeset
Search or ask a question
Author

Yukio Tsukishima

Bio: Yukio Tsukishima is an academic researcher from Nippon Telegraph and Telephone. The author has contributed to research in topics: Optical path & Path (graph theory). The author has an hindex of 4, co-authored 7 publications receiving 1443 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This article proposes a novel, spectrum- efficient, and scalable optical transport network architecture called SLICE, which enables sub-wavelength, superwa wavelength, and multiple-rate data traffic accommodation in a highly spectrum-efficient manner, thereby providing a fractional bandwidth service.
Abstract: The sustained growth of data traffic volume calls for an introduction of an efficient and scalable transport platform for links of 100 Gb/s and beyond in the future optical network. In this article, after briefly reviewing the existing major technology options, we propose a novel, spectrum- efficient, and scalable optical transport network architecture called SLICE. The SLICE architecture enables sub-wavelength, superwavelength, and multiple-rate data traffic accommodation in a highly spectrum-efficient manner, thereby providing a fractional bandwidth service. Dynamic bandwidth variation of elastic optical paths provides network operators with new business opportunities offering cost-effective and highly available connectivity services through time-dependent bandwidth sharing, energy-efficient network operation, and highly survivable restoration with bandwidth squeezing. We also discuss an optical orthogonal frequency-division multiplexing-based flexible-rate transponder and a bandwidth-variable wavelength cross-connect as the enabling technologies of SLICE concept. Finally, we present the performance evaluation and technical challenges that arise in this new network architecture.

1,489 citations

Patent
21 Jan 2003
TL;DR: In this article, a capacity variable link apparatus including a main signal system and a control signal system is provided, including an upper layer signal accommodation part, a lower layer path termination part, and a signal switching part for dividing the upper layer signals to lower layer signals in a lower-layer path group having a capacity that is determined according to an amount of traffic of the upper-layer signal.
Abstract: A capacity variable link apparatus including a main signal system and a control signal system is provided. The main signal system includes: an upper layer signal accommodation part; a lower layer path termination part; and a signal switching part for dividing the upper layer signal to lower layer signals in a lower layer path group having a capacity that is determined according to an amount of traffic of the upper layer signal. The control system includes: a traffic amount measuring part for measuring the amount of traffic of the upper layer and for determining whether the capacity of the lower layer path group is to be increased or decreased according to the amount; and a signal switching management part for controlling the signal switching part according to the result of the determination.

26 citations

Patent
05 Oct 2007
TL;DR: In this article, a path identifier of a path for which reuse of resources of the path to be established is permitted or inhibited is determined, and the determined identification information is included in a control message so that the path is established.
Abstract: In a communication system, including a plurality of communication node apparatuses, for establishing a path for communication by exchanging a message among the plurality of communication node apparatuses, before establishing a path, an identifier of a path for which reuse of resources of the path to be established is permitted or inhibited is determined, and the determined identification information is included in a control message so that the path is established. A communication node apparatus in which the path has been established determines availability of reuse of resources the path based on the identification information in the control message. When an event such as failure occurrence, occurrence of resource reuse or dissolution of resource reuse occurs, the communication node apparatus executes path priority change processing, so that priority can be changed such that resource reuse can be performed most efficiently.

17 citations

Patent
21 Oct 2011
TL;DR: In this article, a wavelength path reallocation method was proposed for reallocating a path set in a communication network, including a path path designing step and a path setting step.
Abstract: A wavelength path reallocation method in a path reallocation apparatus for reallocating a wavelength path set in a communication network, including: a wavelength path designing step in which a wavelength path designing unit designs a reallocation destination wavelength path by performing calculation such that the number of use frequency regions in the communication network becomes smaller than a corresponding value before reallocation; and a wavelength path setting step in which a wavelength path setting unit changes a reallocation target wavelength path to the reallocation destination wavelength path by using free wavelength.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of software defined multiple access (SoDeMA) is proposed, which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.
Abstract: The increasing demand of mobile Internet and the Internet of Things poses challenging requirements for 5G wireless communications, such as high spectral efficiency and massive connectivity. In this article, a promising technology, non-orthogonal multiple access (NOMA), is discussed, which can address some of these challenges for 5G. Different from conventional orthogonal multiple access technologies, NOMA can accommodate much more users via nonorthogonal resource allocation. We divide existing dominant NOMA schemes into two categories: power-domain multiplexing and code-domain multiplexing, and the corresponding schemes include power-domain NOMA, multiple access with low-density spreading, sparse code multiple access, multi-user shared access, pattern division multiple access, and so on. We discuss their principles, key features, and pros/cons, and then provide a comprehensive comparison of these solutions from the perspective of spectral efficiency, system performance, receiver complexity, and so on. In addition, challenges, opportunities, and future research trends for NOMA design are highlighted to provide some insight on the potential future work for researchers in this field. Finally, to leverage different multiple access schemes including both conventional OMA and new NOMA, we propose the concept of software defined multiple access (SoDeMA), which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.

2,512 citations

Journal ArticleDOI
TL;DR: The drivers, building blocks, architecture, and enabling technologies for a whole new elastic optical networking paradigm are described, as well as early standardization efforts.
Abstract: Optical networks are undergoing significant changes, fueled by the exponential growth of traffic due to multimedia services and by the increased uncertainty in predicting the sources of this traffic due to the ever changing models of content providers over the Internet. The change has already begun: simple on-off modulation of signals, which was adequate for bit rates up to 10 Gb/s, has given way to much more sophisticated modulation schemes for 100 Gb/s and beyond. The next bottleneck is the 10-year-old division of the optical spectrum into a fixed "wavelength grid," which will no longer work for 400 Gb/s and above, heralding the need for a more flexible grid. Once both transceivers and switches become flexible, a whole new elastic optical networking paradigm is born. In this article we describe the drivers, building blocks, architecture, and enabling technologies for this new paradigm, as well as early standardization efforts.

1,448 citations

Journal ArticleDOI
TL;DR: A concept of a novel adaptation scheme in SLICE called distance-adaptive spectrum resource allocation, which can save more than 45 percent of required spectrum resources for a 12-node ring network, is presented.
Abstract: The rigid nature of current wavelength-routed optical networks brings limitations on network utilization efficiency. One limitation originates from mismatch of granularities between the client layer and the wavelength layer. The recently proposed spectrum-sliced elastic optical path network (SLICE) is expected to mitigate this problem by adaptively allocating spectral resources according to client traffic demands. This article discusses another limitation of the current optical networks associated with worst case design in terms of transmission performance. In order to address this problem, we present a concept of a novel adaptation scheme in SLICE called distance-adaptive spectrum resource allocation. In the presented scheme the minimum necessary spectral resource is adaptively allocated according to the end-to-end physical condition of an optical path. Modulation format and optical filter width are used as parameters to determine the necessary spectral resources to be allocated for an optical path. Evaluation of network utilization efficiency shows that distance-adaptive SLICE can save more than 45 percent of required spectrum resources for a 12-node ring network. Finally, we introduce the concept of a frequency slot to extend the current frequency grid standard, and discuss possible spectral resource designation schemes.

831 citations

Journal ArticleDOI
TL;DR: This work introduces the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, proves that it is also NP-complete and presents various algorithms to solve it.
Abstract: Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique for optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments. We consider the planning problem of an OFDM optical network, where we are given a traffic matrix that includes the requested transmission rates of the connections to be served. Connections are provisioned for their requested rate by elastically allocating spectrum using a variable number of OFDM subcarriers and choosing an appropriate modulation level, taking into account the transmission distance. We introduce the Routing, Modulation Level and Spectrum Allocation (RMLSA) problem, as opposed to the typical Routing and Wavelength Assignment (RWA) problem of traditional WDM networks, prove that is also NP-complete and present various algorithms to solve it. We start by presenting an optimal ILP RMLSA algorithm that minimizes the spectrum used to serve the traffic matrix, and also present a decomposition method that breaks RMLSA into its two substituent subproblems, namely 1) routing and modulation level and 2) spectrum allocation (RML+SA), and solves them sequentially. We also propose a heuristic algorithm that serves connections one-by-one and use it to solve the planning problem by sequentially serving all the connections in the traffic matrix. In the sequential algorithm, we investigate two policies for defining the order in which connections are considered. We also use a simulated annealing meta-heuristic to obtain even better orderings. We examine the performance of the proposed algorithms through simulation experiments and evaluate the spectrum utilization benefits that can be obtained by utilizing OFDM elastic bandwidth allocation, when compared to a traditional WDM network.

732 citations

Journal ArticleDOI
TL;DR: A tutorial that covers the key aspects of elastic optical networks, and explores the experimental demonstrations that have tested the functionality of the elastic optical network, along with the research challenges and open issues posed by flexible networks.
Abstract: Flexgrid technology is now considered to be a promising solution for future high-speed network design. In this context, we need a tutorial that covers the key aspects of elastic optical networks. This tutorial paper starts with a brief introduction of the elastic optical network and its unique characteristics. The paper then moves to the architecture of the elastic optical network and its operation principle. To complete the discussion of network architecture, this paper focuses on the different node architectures, and compares their performance in terms of scalability and flexibility. Thereafter, this paper reviews and classifies routing and spectrum allocation (RSA) approaches including their pros and cons. Furthermore, various aspects, namely, fragmentation, modulation, quality-of-transmission, traffic grooming, survivability, energy saving, and networking cost related to RSA, are presented. Finally, the paper explores the experimental demonstrations that have tested the functionality of the elastic optical network, and follows that with the research challenges and open issues posed by flexible networks.

547 citations