scispace - formally typeset
Search or ask a question
Author

Yuliang Li

Bio: Yuliang Li is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Catalysis & Electrocatalyst. The author has an hindex of 25, co-authored 26 publications receiving 5149 citations. Previous affiliations of Yuliang Li include Qingdao University of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: A methodology to generate large area graphdiyne films with 3.61 cm(2) on the surface of copper via a cross-coupling reaction using hexaethynylbenzene is demonstrated and shows conductivity of 2.516 x 10(-4) S m(-1) indicating a semiconductor property.

2,027 citations

Journal ArticleDOI
28 Mar 2011-ACS Nano
TL;DR: Using density functional theory coupled with Boltzmann transport equation with relaxation time approximation, the electronic structure is investigated and the charge mobility for a new carbon allotrope, the graphdiyne for both the sheet and nanoribbons is predicted.
Abstract: Using density functional theory coupled with Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the charge mobility for a new carbon allotrope, the graphdiyne for both the sheet and nanoribbons. It is shown that the graphdiyne sheet is a semiconductor with a band gap of 0.46 eV. The calculated in-plane intrinsic electron mobility can reach the order of 10(5) cm(2)/(V s) at room temperature, while the hole mobility is about an order of magnitude lower.

791 citations

Journal ArticleDOI
TL;DR: A strategy for fabrication of ACs comprising only isolated nickel/iron atoms anchored on graphdiyne is reported, which shows high hydrogen evolution electrocatalysis activities and motivates the authors to develop a general approach in the field of single-atom transition-metal catalysis.
Abstract: Electrocatalysis by atomic catalysts is a major focus of chemical and energy conversion effort. Although transition-metal-based bulk electrocatalysts for electrochemical application on energy conversion processes have been reported frequently, anchoring the stable transition-metal atoms (e.g. nickel and iron) still remains a practical challenge. Here we report a strategy for fabrication of ACs comprising only isolated nickel/iron atoms anchored on graphdiyne. Our findings identify the very narrow size distributions of both nickel (1.23 A) and iron (1.02 A), typical sizes of single-atom nickel and iron. The precision of this method motivates us to develop a general approach in the field of single-atom transition-metal catalysis. Such atomic catalysts have high catalytic activity and stability for hydrogen evolution reactions.

692 citations

Journal ArticleDOI
TL;DR: Chemically defined sp-hybridized nitrogen atoms have been selectively introduced to the acetylene groups in ultrathin graphdiynes, resulting in good catalytic activity for the oxygen reduction reaction in both alkaline and acidic media.
Abstract: The oxygen reduction reaction (ORR) is a fundamental reaction for energy storage and conversion. It has mainly relied on platinum-based electrocatalysts, but the chemical doping of carbon-based materials has proven to be a promising strategy for preparing metal-free alternatives. Nitrogen doping in particular provides a diverse range of nitrogen forms. Here, we introduce a new form of nitrogen doping moieties —sp-hybridized nitrogen (sp-N) atoms into chemically defined sites of ultrathin graphdiyne, through pericyclic replacement of the acetylene groups. The as-prepared sp-N-doped graphdiyne catalyst exhibits overall good ORR performance, in particular with regards to peak potential, half-wave potential and current density. Under alkaline conditions it was comparable to commercial Pt/C, and showed more rapid kinetics. And although its performances are a bit lower than those of Pt/C in acidic media they surpass those of other metal-free materials. Taken together, experimental data and density functional theory calculations suggest that the high catalytic activity originates from the sp-N dopant, which facilitates O2 adsorption and electron transfer on the surface of the catalyst. This incorporation of chemically defined sp-N atoms provides a new synthetic route to high-performance carbon-based and other metal-free catalysts.

497 citations

Journal ArticleDOI
TL;DR: A rational approach to synthesize graphdiyne nanowalls using a modified Glaser-Hay coupling reaction using Hexaethynylbenzene and copper plate as monomer and substrate, thus forming catalytic reaction sites and exhibiting excellent and stable field-emission properties.
Abstract: Synthesizing graphdiyne with a well-defined structure is a great challenge. We reported herein a rational approach to synthesize graphdiyne nanowalls using a modified Glaser–Hay coupling reaction. Hexaethynylbenzene and copper plate were selected as monomer and substrate, respectively. By adjusting the ratio of added organic alkali along with the amount of monomer, the proper amount of copper ions was dissolved into the solution, thus forming catalytic reaction sites. With a rapid reaction rate of Glaser–Hay coupling, graphdiyne grew vertically at these sites first, and then with more copper ions dissolved, uniform graphdiyne nanowalls formed on the surface of copper substrate. Raman spectra, UV–vis spectra, and HRTEM results confirmed the features of graphdiyne. These graphdiyne nanowalls also exhibited excellent and stable field-emission properties.

433 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Recent advances in the use of graphene and other 2D materials in catalytic applications are reviewed, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals).
Abstract: Graphene and other 2D atomic crystals are of considerable interest in catalysis because of their unique structural and electronic properties. Over the past decade, the materials have been used in a variety of reactions, including the oxygen reduction reaction, water splitting and CO2 activation, and have been shown to exhibit a range of catalytic mechanisms. Here, we review recent advances in the use of graphene and other 2D materials in catalytic applications, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals). We discuss the advantages of these materials for catalysis and the different routes available to tune their electronic states and active sites. We also explore the future opportunities of these catalytic materials and the challenges they face in terms of both fundamental understanding and the development of industrial applications.

1,683 citations

Journal ArticleDOI
TL;DR: Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures.
Abstract: and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures Vasilios Georgakilas,† Jason A. Perman,‡ Jiri Tucek,‡ and Radek Zboril*,‡ †Material Science Department, University of Patras, 26504 Rio Patras, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic

1,366 citations

Journal ArticleDOI
TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Abstract: Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, ...

1,363 citations

Journal ArticleDOI
TL;DR: The recent development of this concept is reviewed here and a novel principle for the design of oxygen electrocatalysts is proposed and an overview of the defects in carbon-based, metal-free electrocatalysis for ORR and various defects in metal oxides/selenides for OER is provided.
Abstract: Oxygen electrocatalysis, including the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER), is a critical process for metal-air batteries Therefore, the development of electrocatalysts for the OER and the ORR is of essential importance Indeed, various advanced electrocatalysts have been designed for the ORR or the OER; however, the origin of the advanced activity of oxygen electrocatalysts is still somewhat controversial The enhanced activity is usually attributed to the high surface areas, the unique facet structures, the enhanced conductivities, or even to unclear synergistic effects, but the importance of the defects, especially the intrinsic defects, is often neglected More recently, the important role of defects in oxygen electrocatalysis has been demonstrated by several groups To make the defect effect clearer, the recent development of this concept is reviewed here and a novel principle for the design of oxygen electrocatalysts is proposed An overview of the defects in carbon-based, metal-free electrocatalysts for ORR and various defects in metal oxides/selenides for OER is also provided The types of defects and controllable strategies to generate defects in electrocatalysts are presented, along with techniques to identify the defects The defect-activity relationship is also explored by theoretical methods

1,222 citations