scispace - formally typeset
Search or ask a question
Author

Yun Fu

Bio: Yun Fu is an academic researcher from Northeastern University. The author has contributed to research in topics: Cluster analysis & Discriminative model. The author has an hindex of 72, co-authored 511 publications receiving 22944 citations. Previous affiliations of Yun Fu include North Carolina Central University & Northeastern University (China).


Papers
More filters
Proceedings ArticleDOI
18 Jun 2018
TL;DR: This paper proposes residual dense block (RDB) to extract abundant local features via dense connected convolutional layers and uses global feature fusion in RDB to jointly and adaptively learn global hierarchical features in a holistic way.
Abstract: A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.

2,860 citations

Posted Content
Yulun Zhang1, Kunpeng Li1, Kai Li1, Lichen Wang1, Bineng Zhong1, Yun Fu1 
TL;DR: This work proposes a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections, and proposes a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels.
Abstract: Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods.

2,025 citations

Book ChapterDOI
Yulun Zhang1, Kunpeng Li1, Kai Li1, Lichen Wang1, Bineng Zhong1, Yun Fu1 
08 Sep 2018
TL;DR: Very deep residual channel attention networks (RCAN) as mentioned in this paper proposes a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections Each residual group contains some residual blocks with short skip connections.
Abstract: Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR) However, we observe that deeper networks for image SR are more difficult to train The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs To solve these problems, we propose the very deep residual channel attention networks (RCAN) Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections Each residual group contains some residual blocks with short skip connections Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods

1,991 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This work found that the last fully connected layer has a strong bias towards the new classes, and this bias can be corrected by a linear model, and with two bias parameters, this method performs remarkably well on two large datasets.
Abstract: Modern machine learning suffers from \textit{catastrophic forgetting} when learning new classes incrementally. The performance dramatically degrades due to the missing data of old classes. Incremental learning methods have been proposed to retain the knowledge acquired from the old classes, by using knowledge distilling and keeping a few exemplars from the old classes. However, these methods struggle to \textbf{scale up to a large number of classes}. We believe this is because of the combination of two factors: (a) the data imbalance between the old and new classes, and (b) the increasing number of visually similar classes. Distinguishing between an increasing number of visually similar classes is particularly challenging, when the training data is unbalanced. We propose a simple and effective method to address this data imbalance issue. We found that the last fully connected layer has a strong bias towards the new classes, and this bias can be corrected by a linear model. With two bias parameters, our method performs remarkably well on two large datasets: ImageNet (1000 classes) and MS-Celeb-1M (10000 classes), outperforming the state-of-the-art algorithms by 11.1\% and 13.2\% respectively.

783 citations

Journal ArticleDOI
TL;DR: The complete state-of-the-art techniques in the face image-based age synthesis and estimation topics are surveyed, including existing models, popular algorithms, system performances, technical difficulties, popular face aging databases, evaluation protocols, and promising future directions are provided.
Abstract: Human age, as an important personal trait, can be directly inferred by distinct patterns emerging from the facial appearance. Derived from rapid advances in computer graphics and machine vision, computer-based age synthesis and estimation via faces have become particularly prevalent topics recently because of their explosively emerging real-world applications, such as forensic art, electronic customer relationship management, security control and surveillance monitoring, biometrics, entertainment, and cosmetology. Age synthesis is defined to rerender a face image aesthetically with natural aging and rejuvenating effects on the individual face. Age estimation is defined to label a face image automatically with the exact age (year) or the age group (year range) of the individual face. Because of their particularity and complexity, both problems are attractive yet challenging to computer-based application system designers. Large efforts from both academia and industry have been devoted in the last a few decades. In this paper, we survey the complete state-of-the-art techniques in the face image-based age synthesis and estimation topics. Existing models, popular algorithms, system performances, technical difficulties, popular face aging databases, evaluation protocols, and promising future directions are also provided with systematic discussions.

743 citations


Cited by
More filters
Proceedings ArticleDOI
03 Apr 2017
TL;DR: This work strives to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback, and presents a general framework named NCF, short for Neural network-based Collaborative Filtering.
Abstract: In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering --- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.

4,419 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: This paper proposes residual dense block (RDB) to extract abundant local features via dense connected convolutional layers and uses global feature fusion in RDB to jointly and adaptively learn global hierarchical features in a holistic way.
Abstract: A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.

2,860 citations

Journal ArticleDOI
TL;DR: This survey reviews recent trends in video-based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement.

2,738 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes an LSTM model which can learn general human movement and predict their future trajectories and outperforms state-of-the-art methods on some of these datasets.
Abstract: Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.

2,587 citations