scispace - formally typeset
Search or ask a question
Author

Yun Li

Bio: Yun Li is an academic researcher from University of Wyoming. The author has contributed to research in topics: Medicine & Neuroscience. The author has an hindex of 9, co-authored 17 publications receiving 476 citations. Previous affiliations of Yun Li include Florida State University College of Arts and Sciences & National Institute on Drug Abuse.

Papers
More filters
Journal ArticleDOI
05 Oct 2016-Neuron
TL;DR: It is proposed that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior.

235 citations

Journal ArticleDOI
TL;DR: Focal ablation of somatostatin interneurons efficiently restored normal excitability of L5-PNs and alleviated neurodegeneration, suggesting a new therapeutic target for ALS and FTD.
Abstract: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping neurodegenerative disorders whose pathogenesis remains largely unknown. Using TDP-43(A315T) mice, an ALS and FTD model with marked cortical pathology, we found that hyperactive somatostatin interneurons disinhibited layer 5 pyramidal neurons (L5-PNs) and contributed to their excitotoxicity. Focal ablation of somatostatin interneurons efficiently restored normal excitability of L5-PNs and alleviated neurodegeneration, suggesting a new therapeutic target for ALS and FTD.

112 citations

Journal ArticleDOI
07 Nov 2018-Neuron
TL;DR: This work utilized miniScopes to record calcium activities from hundreds of excitatory neurons in the mPFC while mice freely explored restrained social targets in the absence or presence of the psychedelic drug phencyclidine, and identified distinct and dynamic ON and OFF neural ensembles that displayed opposing activities to code real-time behavioral information.

93 citations

Journal ArticleDOI
TL;DR: A custom‐designed miniscope GRadient INdex (GRIN) lens system that enables simultaneously recording from hundreds of neurons for months, enabling the elucidation of neural mechanisms underlying behavioral control.
Abstract: Visualizing neural activity from deep brain regions in freely behaving animals through miniature fluorescent microscope (miniscope) systems is becoming more important for understanding neural encoding mechanisms underlying cognitive functions. Here we present our custom-designed miniscope GRadient INdex (GRIN) lens system that enables simultaneously recording from hundreds of neurons for months. This article includes miniscope design, the surgical procedure for GRIN lens implantation, miniscope mounting on the head of a mouse, and data acquisition and analysis. First, a target brain region is labeled with virus expressing GCaMP6; second, a GRIN lens is implanted above the target brain region; third, following mouse surgical recovery, a miniscope is mounted on the head of the mouse above the GRIN lens; and finally, neural activity is recorded from the freely behaving mouse. This system can be applied to recording the same population of neurons longitudinally, enabling the elucidation of neural mechanisms underlying behavioral control. © 2018 by John Wiley & Sons, Inc.

66 citations

Journal ArticleDOI
TL;DR: A miniature wireless fluorescence microscope (miniScope) that allows recording of brain neural activities at single cell resolution and allows simultaneous in vivo imaging from multiple animals is developed.

53 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
22 Feb 2018-eLife
TL;DR: A new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest is described, which substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes.
Abstract: In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data.

491 citations

01 Jun 2014
TL;DR: The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes and revealed homeostatic tuning of intrinsic excitability in human stem cell–derived neurons.
Abstract: All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk–free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell–derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.

473 citations

Journal ArticleDOI
15 Oct 2020-Nature
TL;DR: It is suggested that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.
Abstract: Microglia, the brain’s resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease. Microglia, the brain’s immune cells, suppress neuronal activity in response to synaptic ATP release and alter behavioural responses in mice.

421 citations