scispace - formally typeset
Search or ask a question
Author

Yun Lin

Other affiliations: University of Newcastle
Bio: Yun Lin is an academic researcher from University of New South Wales. The author has contributed to research in topics: Biochar & Medicine. The author has an hindex of 12, co-authored 13 publications receiving 1708 citations. Previous affiliations of Yun Lin include University of Newcastle.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review describes the properties of biochar and suggests possible reactions that may occur after the addition of biochars to soil, including dissolution-precipitation, adsorption-desorption, acid-base, and redox reactions.
Abstract: Interactions between biochar, soil, microbes, and plant roots may occur within a short period of time after application to the soil. The extent, rates, and implications of these interactions, however, are far from understood. This review describes the properties of biochars and suggests possible reactions that may occur after the addition of biochars to soil. These include dissolution-precipitation, adsorption-desorption, acid-base, and redox reactions. Attention is given to reactions occurring within pores, and to interactions with roots, microorganisms, and soil fauna. Examination of biochars (from chicken litter, greenwaste, and paper mill sludges) weathered for 1 and 2 years in an Australian Ferrosol provides evidence for some of the mechanisms described in this review and offers an insight to reactions at a molecular scale. These interactions are biochar- and site-specific. Therefore, suitable experimental trials—combining biochar types and different pedoclimatic conditions—are needed to determine the extent to which these reactions influence the potential of biochar as a soil amendment and tool for carbon sequestration.

915 citations

Journal ArticleDOI
TL;DR: Water extracts obtained from twelve non-herbaceous biochars were tested by Liquid Chromatography - Organic Carbon Detection (LC-OCD) to identify the effects of both pyrolysis conditions and chemical treatments on WEOC content, and the utility of LC- OCD is demonstrated in providing an understanding of how biochar additions to soil can alter DOC.

291 citations

Journal ArticleDOI
TL;DR: In this paper, a chicken manure biochar and a paper sludge biochar were amended into ferrosol as part of an agronomic field trial, and the authors investigated interactions between these biochars and the soil after a 3 month trial.
Abstract: Aims In this study, a chicken manure biochar (CM biochar) and a paper sludge biochar (PS biochar), prepared under similar treatment conditions, were amended into ferrosol as part of an agronomic field trial. The aim of this study is to investigate interactions between these biochars and the soil after a 3 month trial. Methods Soil samples following field trials were taken and biochar was separated from the soil, and studied for both surface oxidation and the degree of interaction with surrounding soil by X-ray photoelectron spectroscopy (XPS), SEM and TEM equipped with EDS for elemental analysis. Results Following incubation in field soil, both biochars showed that soil mineral incorporation on to their surfaces occurred within the first year, although the attachment was localized at specific sites on the surface. A relatively high concentration of Al was found at the interface between the biochar and mineral phases in both aged biochars, indicating a binding role of Al. For the CM biochar, a soil-iron redox reaction may be associated with the formation of biocharmineral complexes due to the relatively higher labile carbon content and higher pH value of this biochar. Conclusions Soilmineralattachmentmayoccurdirectly on to the biochar surface because of the formation of carboxylic and phenolic functional groups on the aged CM biochar surface by an oxidation reaction. For the PS biochar, adsorption of organic matter from the soil facilitated interactions between the biochar and mineral phases in the soil. Calcium is believed to be important in this process.

217 citations

Journal ArticleDOI
TL;DR: Quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy shows that the presence of the iron clay prevents degradation of the cellulosic fraction at pyrolysis temperatures of 250 °C, whereas at higher temperatures, the clay promotes biomass degradation, resulting in an increase in both the concentrations of condensed aromatic, acidic, and phenolic carbon species.
Abstract: Dramatic changes in molecular structure, degradation pathway, and porosity of biochar are observed at pyrolysis temperatures ranging from 250 to 550 °C when bamboo biomass is pretreated by iron-sulfate-clay slurries (iron-clay biochar), as compared to untreated bamboo biochar. Electron microscopy analysis of the biochar reveals the infusion of mineral species into the pores of the biochar and the formation of mineral nanostructures. Quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy shows that the presence of the iron clay prevents degradation of the cellulosic fraction at pyrolysis temperatures of 250 °C, whereas at higher temperatures (350-550 °C), the clay promotes biomass degradation, resulting in an increase in both the concentrations of condensed aromatic, acidic, and phenolic carbon species. The porosity of the biochar, as measured by NMR cryoporosimetry, is altered by the iron-clay pretreatment. In the presence of the clay, at lower pyrolysis temperatures, the biochar develops a higher pore volume, while at higher temperature, the presence of clay causes a reduction in the biochar pore volume. The most dramatic reduction in pore volume is observed in the kaolinite-infiltrated biochar at 550 °C, which is attributed to the blocking of the mesopores (2-50 nm pore) by the nonporous metakaolinite formed from kaolinite.

132 citations

Journal ArticleDOI
21 Jul 2015-Agronomy
TL;DR: The redox processes that take place in soil and how they may be affected by the addition of biochar are reviewed and new methods and data for determining redox properties of fresh biochars and for biochar/soil systems are presented.
Abstract: Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins as mentioned in this paper.
Abstract: Soil amendment with biochar is evaluated globally as a means to improve soil fertility and to mitigate climate change. However, the effects of biochar on soil biota have received much less attention than its effects on soil chemical properties. A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins. However, no studies exist in the soil biologyliterature that recognize the observed largevariations ofbiochar physico-chemical properties. This shortcoming has hampered insight into mechanisms by which biochar influences soil microorganisms, fauna and plant roots. Additional factors limiting meaningful interpretation of many datasets are the clearly demonstrated sorption properties that interfere with standard extraction procedures for soil microbial biomass or enzyme assays, and the confounding effects of varying amounts of minerals. In most studies, microbial biomass has been found to increase as a result of biochar additions, with significant changes in microbial community composition and enzyme activities that may explain biogeochemical effects of biochar on element cycles, plant pathogens, and crop growth. Yet, very little is known about the mechanisms through which biochar affects microbial abundance and community composition. The effects of biochar on soil fauna are even less understood than its effects on microorganisms, apart from several notable studies on earthworms. It is clear, however, that sorption phenomena, pH and physical properties of biochars such as pore structure, surface area and mineral matter play important roles in determining how different biochars affect soil biota. Observations on microbial dynamics lead to the conclusion of a possible improved resource use due to co-location of various resources in and around biochars. Sorption and therebyinactivation of growth-inhibiting substances likelyplaysa rolefor increased abundance of soil biota. No evidence exists so far for direct negative effects of biochars on plant roots. Occasionally observed decreases in abundance of mycorrhizal fungi are likely caused by concomitant increases in nutrient availability,reducing theneedfor symbionts.Inthe shortterm,therelease ofavarietyoforganic molecules from fresh biochar may in some cases be responsible for increases or decreases in abundance and activity of soil biota. A road map for future biochar research must include a systematic appreciation of different biochar-types and basic manipulative experiments that unambiguously identify the interactions between biochar and soil biota.

3,612 citations

Journal ArticleDOI
TL;DR: Due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain.

3,163 citations

Journal ArticleDOI
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again

2,587 citations

Journal ArticleDOI
TL;DR: The remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented.

1,507 citations

Journal ArticleDOI
TL;DR: Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.

1,289 citations