scispace - formally typeset
Search or ask a question
Author

Yunfei Ding

Bio: Yunfei Ding is an academic researcher from University of Minnesota. The author has contributed to research in topics: Magnetoresistance & Tunnel magnetoresistance. The author has an hindex of 16, co-authored 18 publications receiving 1460 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, experimental and numerical results of current-driven magnetization switching in magnetic tunnel junctions were presented, and three distinct switching modes, thermal activation, dynamic reversal, and precessional process, were identified within the experimental parameter space.
Abstract: We present experimental and numerical results of current-driven magnetization switching in magnetic tunnel junctions. The experiments show that, for MgO-based magnetic tunnelling junctions, the tunnelling magnetoresistance ratio is as large as 155% and the intrinsic switching current density is as low as 1.1 ? 106?A?cm?2. The thermal effect and current pulse width on spin-transfer magnetization switching are explored based on the analytical and numerical calculations. Three distinct switching modes, thermal activation, dynamic reversal, and precessional process, are identified within the experimental parameter space. The switching current distribution, write error, and read disturb are discussed based on device design considerations. The challenges and requirements for the successful application of spin-transfer torque as the write scheme in random access memory are addressed.

458 citations

Journal ArticleDOI
TL;DR: In this article, a dual magnetic tunnel junction (MTJ) structure consisting of two MgO insulating barriers of different resistances, two pinned reference layers aligned antiparallel to one another, and a free layer embedded between the two barriers has been developed.
Abstract: Dual magnetic tunnel junction (MTJ) structures consisting of two MgO insulating barriers of different resistances, two pinned reference layers aligned antiparallel to one another, and a free layer embedded between the two insulating barriers have been developed. The electron transport and spin dependent resistances in the dual MTJ structures are accounted for by sequential tunneling with some spin-flip relaxation in the central electrode (the free layer). With a tunneling magnetoresistance ratio of 70%, a switching current density Jc (at 30ms) of 0.52MA∕cm2 is obtained, corresponding to an intrinsic value of Jc0 (at 1ns) of 1.0MA∕cm2. This value of Jc0 is 2–3 times smaller than that of a single MgO insulating barrier MTJ structure and results from improvements in the spin-transfer torque efficiency. The asymmetry between JcAP→P and JcP→AP is significantly improved, which widens the read-write margin for memory device design. In addition, the experimental results show that the switching current density can be further reduced when an external field is applied along the hard axis of the free layer.

223 citations

Journal ArticleDOI
TL;DR: In this article, the authors present spin transfer switching results for MgO-based magnetic tunneling junctions (MTJ) with large tunneling magnetoresistance (TMR) ratio of up to 150% and low intrinsic switching current density of 2-3×106A∕cm2.
Abstract: We present spin transfer switching results for MgO based magnetic tunneling junctions (MTJs) with large tunneling magnetoresistance (TMR) ratio of up to 150% and low intrinsic switching current density of 2–3×106A∕cm2. The switching data are compared to those obtained on similar MTJ nanostructures with AlOx barrier. It is observed that the switching current density for MgO based MTJs is 3 to 4 times smaller than that for AlOx based MTJs, and that can be attributed to higher tunneling spin polarization (TSP) in MgO based MTJs. In addition, we report a qualitative study of TSP for a set of samples, ranging from 0.22 for AlOx to 0.46 for MgO based MTJs, and that shows the TSP (at finite bias) responsible for the current-driven magnetization switching is suppressed as compared to zero-bias tunneling spin polarization determined from TMR.

208 citations

Journal ArticleDOI
TL;DR: The bias dependence of the perpendicular spin torque is formulated by taking into account the energy-dependent inelastic scattering of tunnel electrons and it is found that the direction of the torque reverses as the polarity of the voltage changes.
Abstract: We quantitatively determine a perpendicular spin torque in magnetic tunnel junctions by measuring the room-temperature critical switching current at various magnetic fields and current pulse widths. We find that the magnitude of the torque is proportional to the product of the current density and the bias voltage, and the direction of the torque reverses as the polarity of the voltage changes. By taking into account the energy-dependent inelastic scattering of tunnel electrons, we formulate the bias dependence of the perpendicular spin torque which is in qualitative agreement with the experimental results.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the intrinsic critical current density (Jc0) was estimated by extrapolating experimentally obtained critical current densities versus pulse width (τ) data to a pulse width of 1ns.
Abstract: Spin-transfer-driven magnetization switching was studied in single magnetic tunneling junctions (MTJ: Ta∕PtMn∕CoFe∕Ru∕CoFeB∕Al2O3∕CoFeB∕Ta) and dual spin filters (DSF: Ta∕PtMn∕CoFe∕Ru∕CoFeB∕Al2O3∕CoFeB∕spacer∕CoFe∕PtMn∕Ta) having resistance-area (RA) product in the range of 10–30Ωμm2 and tunnel magnetoresistance (TMR) of 15%–30%. The intrinsic critical current density (Jc0) was estimated by extrapolating experimentally obtained critical current density (Jc) versus pulse width (τ) data to a pulse width of 1ns. Jc, extrapolated to τ of 1ns (∼Jc0), was 7×106 and 2.2×106A∕cm2, respectively, for the MTJ and improved DSF samples having identical free layers. Thus, a significant enhancement of the spin transfer switching efficiency is seen for DSF structures compared to the single MTJ case.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the physics of spin transfer torque in magnetic devices are discussed and an elementary discussion of the mechanism and experimental progress in this field is provided, along with a review of theoretical and experimental results.

1,688 citations

Journal ArticleDOI
TL;DR: In this article, the authors observed tunnel magnetoresistance (TMR) ratio of 604% at 300K in Ta∕Co20Fe60B20∕MgO∕SiO2 or Co20Fe 60B20 ∕Ta pseudo-spin-valve magnetic tunnel junction junction annealed at 525°C.
Abstract: The authors observed tunnel magnetoresistance (TMR) ratio of 604% at 300K in Ta∕Co20Fe60B20∕MgO∕Co20Fe60B20∕Ta pseudo-spin-valve magnetic tunnel junction annealed at 525°C. To obtain high TMR ratio, it was found critical to anneal the structure at high temperature above 500°C, while suppressing the Ta diffusion into CoFeB electrodes and in particular to the CoFeB∕MgO interface. X-ray diffraction measurement of MgO on SiO2 or Co20Fe60B20 shows that an improvement of MgO barrier quality, in terms of the degree of the (001) orientation and stress relaxation, takes place at annealing temperatures above 450°C. The highest TMR ratio observed at 5K was 1144%.

1,415 citations

Journal ArticleDOI
TL;DR: The memristor is a 2-terminal nonvolatile memory device that exhibits a pinched hysteresis loop confined to the first and third quadrants of the v-i plane whose contour shape in general changes with both the amplitude and frequency of any periodic sine-wave-like input voltage source, or current source as mentioned in this paper.
Abstract: All 2-terminal non-volatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms. They all exhibit a distinctive “fingerprint” characterized by a pinched hysteresis loop confined to the first and the third quadrants of the v–i plane whose contour shape in general changes with both the amplitude and frequency of any periodic “sine-wave-like” input voltage source, or current source. In particular, the pinched hysteresis loop shrinks and tends to a straight line as frequency increases. Though numerous examples of voltage vs. current pinched hysteresis loops have been published in many unrelated fields, such as biology, chemistry, physics, etc., and observed from many unrelated phenomena, such as gas discharge arcs, mercury lamps, power conversion devices, earthquake conductance variations, etc., we restrict our examples in this tutorial to solid-state and/or nano devices where copious examples of published pinched hysteresis loops abound. In particular, we sampled arbitrarily, one example from each year between the years 2000 and 2010, to demonstrate that the memristor is a device that does not depend on any particular material, or physical mechanism. For example, we have shown that spin-transfer magnetic tunnel junctions are examples of memristors. We have also demonstrated that both bipolar and unipolar resistance switching devices are memristors.

1,208 citations

01 Jan 2019
TL;DR: The goal of this tutorial is to introduce some fundamental circuit-theoretic concepts and properties of the memristor that are relevant to the analysis and design of non-volatile nano memories where binary bits are stored as resistances manifested by the Memristor’s continuum of equilibrium states.
Abstract: All 2-terminal non-volatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms. They all exhibit a distinctive “fingerprint” characterized by a pinched hysteresis loop confined to the first and the third quadrants of the v–i plane whose contour shape in general changes with both the amplitude and frequency of any periodic “sine-wave-like” input voltage source, or current source. In particular, the pinched hysteresis loop shrinks and tends to a straight line as frequency increases. Though numerous examples of voltage vs. current pinched hysteresis loops have been published in many unrelated fields, such as biology, chemistry, physics, etc., and observed from many unrelated phenomena, such as gas discharge arcs, mercury lamps, power conversion devices, earthquake conductance variations, etc., we restrict our examples in this tutorial to solid-state and/or nano devices where copious examples of published pinched hysteresis loops abound. In particular, we sampled arbitrarily, one example from each year between the years 2000 and 2010, to demonstrate that the memristor is a device that does not depend on any particular material, or physical mechanism. For example, we have shown that spin-transfer magnetic tunnel junctions are examples of memristors. We have also demonstrated that both bipolar and unipolar resistance switching devices are memristors.

1,097 citations

Journal ArticleDOI
TL;DR: How currents can generate torques that affect the magnetic orientation and the reciprocal effect in a wide variety of magnetic materials and structures is explained.
Abstract: The magnetization of a magnetic material can be reversed by using electric currents that transport spin angular momentum. In the reciprocal process a changing magnetization orientation produces currents that transport spin angular momentum. Understanding how these processes occur reveals the intricate connection between magnetization and spin transport, and can transform technologies that generate, store or process information via the magnetization direction. Here we explain how currents can generate torques that affect the magnetic orientation and the reciprocal effect in a wide variety of magnetic materials and structures. We also discuss recent state-of-the-art demonstrations of current-induced torque devices that show great promise for enhancing the functionality of semiconductor devices.

1,049 citations