scispace - formally typeset
Search or ask a question
Author

Yung-Chen Lin

Bio: Yung-Chen Lin is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Nanowire & Electron mobility. The author has an hindex of 20, co-authored 39 publications receiving 3105 citations. Previous affiliations of Yung-Chen Lin include Applied Materials & National Tsing Hua University.

Papers
More filters
Journal ArticleDOI
16 Sep 2010-Nature
TL;DR: On-chip microwave measurements demonstrate that the self-aligned graphene transistors have a high intrinsic cut-off (transit) frequency of fT = 100–300 GHz, with the extrinsic fT largely limited by parasitic pad capacitance.
Abstract: Graphene has attracted considerable interest as a potential new electronic material. With its high carrier mobility, graphene is of particular interest for ultrahigh-speed radio-frequency electronics. However, conventional device fabrication processes cannot readily be applied to produce high-speed graphene transistors because they often introduce significant defects into the monolayer of carbon lattices and severely degrade the device performance. Here we report an approach to the fabrication of high-speed graphene transistors with a self-aligned nanowire gate to prevent such degradation. A Co(2)Si-Al(2)O(3) core-shell nanowire is used as the gate, with the source and drain electrodes defined through a self-alignment process and the channel length defined by the nanowire diameter. The physical assembly of the nanowire gate preserves the high carrier mobility in graphene, and the self-alignment process ensures that the edges of the source, drain and gate electrodes are automatically and precisely positioned so that no overlapping or significant gaps exist between these electrodes, thus minimizing access resistance. It therefore allows for transistor performance not previously possible. Graphene transistors with a channel length as low as 140 nm have been fabricated with the highest scaled on-current (3.32 mA μm(-1)) and transconductance (1.27 mS μm(-1)) reported so far. Significantly, on-chip microwave measurements demonstrate that the self-aligned devices have a high intrinsic cut-off (transit) frequency of f(T) = 100-300 GHz, with the extrinsic f(T) (in the range of a few gigahertz) largely limited by parasitic pad capacitance. The reported intrinsic f(T) of the graphene transistors is comparable to that of the very best high-electron-mobility transistors with similar gate lengths.

1,227 citations

Journal ArticleDOI
TL;DR: This study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits.
Abstract: Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits.

350 citations

Journal ArticleDOI
TL;DR: It is shown that single crystalline Al2O3 nanoribbons can be synthesized with excellent dielectric properties and used as the gate dielectrics for top-gated graphene transistors with the highest carrier mobility reported to date, and a more than 10-fold increase in transconductance compared to the back- gated devices.
Abstract: Deposition of high-κ dielectrics onto graphene is of significant challenge due to the difficulties of nucleating high quality oxide on pristine graphene without introducing defects into the monolayer of carbon lattice. Previous efforts to deposit high-κ dielectrics on graphene often resulted in significant degradation in carrier mobility. Here we report an entirely new strategy to integrate high quality high-κ dielectrics with graphene by first synthesizing freestanding high-κ oxide nanoribbons at high temperature and then transferring them onto graphene at room temperature. We show that single crystalline Al2O3 nanoribbons can be synthesized with excellent dielectric properties. Using such nanoribbons as the gate dielectrics, we have demonstrated top-gated graphene transistors with the highest carrier mobility (up to 23,600 cm2/V·s) reported to date, and a more than 10-fold increase in transconductance compared to the back-gated devices. This method opens a new avenue to integrate high-κ dielectrics on graphene with the preservation of the pristine nature of graphene and high carrier mobility, representing an important step forward to high-performance graphene electronics.

197 citations

Journal ArticleDOI
TL;DR: Graphene transistors with 45-100 nm channel lengths have been fabricated with the scaled transconductance exceeding 2 mS/μm, comparable to the best performed high electron mobility transistor with similar channel lengths.
Abstract: Here we report high performance sub-100 nm channel length grapheme transistors fabricated using a self-aligned approach. The graphene transistors are fabricated using a highly-doped GaN nanowire as the local gate, with the source and drain electrodes defined through a self-aligned process and the channel length defined by the nanowire size. This fabrication approach allows the preservation of the high carrier mobility in graphene, and ensures nearly perfect alignment between source, drain, and gate electrodes. It therefore affords transistor performance not previously possible. Graphene transistors with 45–100 nm channel lengths have been fabricated with the scaled transconductance exceeding 2 mS/µm, comparable to the best performed high electron mobility transistors with similar channel lengths. Analysis of and the device characteristics gives a transit time of 120–220 fs and the projected intrinsic cutoff transit frequency (fT) reaching 700–1400 GHz. This study demonstrates the exciting potential of graphene based electronics in terahertz electronics.

189 citations

Journal ArticleDOI
TL;DR: This method, for the first time, demonstrates the effective integration of ultrathin high-k dielectrics with graphene with precisely controlled thickness and quality, representing an important step toward high-performance graphene electronics.
Abstract: The integration ultrathin high dielectric constant (high-k) materials with graphene nanoribbons (GNRs) for top-gated transistors can push their performance limit for nanoscale electronics. Here we report the assembly of Si/HfO2 core/shell nanowires on top of individual GNRs as the top-gates for GNR field-effect transistors with ultrathin high-k dielectrics. The Si/HfO2 core/shell nanowires are synthesized by atomic layer deposition of the HfO2 shell on highly doped silicon nanowires with a precise control of the dielectric thickness down to 1−2 nm. Using the core/shell nanowires as the top-gates, high-performance GNR transistors have been achieved with transconductance reaching 3.2 mS μm−1, the highest value for GNR transistors reported to date. This method, for the first time, demonstrates the effective integration of ultrathin high-k dielectrics with graphene with precisely controlled thickness and quality, representing an important step toward high-performance graphene electronics.

176 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
21 Mar 2014-ACS Nano
TL;DR: In this paper, the 2D counterpart of layered black phosphorus, which is called phosphorene, is introduced as an unexplored p-type semiconducting material and the authors find that the band gap is direct, depends on the number of layers and the in-layer strain, and significantly larger than the bulk value of 0.31-0.36 eV.
Abstract: We introduce the 2D counterpart of layered black phosphorus, which we call phosphorene, as an unexplored p-type semiconducting material. Same as graphene and MoS2, single-layer phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct, and appreciable band gap. Our ab initio calculations indicate that the band gap is direct, depends on the number of layers and the in-layer strain, and is significantly larger than the bulk value of 0.31–0.36 eV. The observed photoluminescence peak of single-layer phosphorene in the visible optical range confirms that the band gap is larger than that of the bulk system. Our transport studies indicate a hole mobility that reflects the structural anisotropy of phosphorene and complements n-type MoS2. At room temperature, our few-layer phosphorene field-effect transistors with 1.0 μm channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm2/V·s, and an...

5,233 citations

Journal ArticleDOI
Han Liu, Adam T. Neal, Zhen Zhu, David Tománek, Peide D. Ye1 
TL;DR: In this article, a few-layer phosphorene has been introduced as a 2D p-type material for electronic applications, which has an inherent, direct and appreciable band gap that depends on the number of layers.
Abstract: Preceding the current interest in layered materials for electronic applications, research in the 1960's found that black phosphorus combines high carrier mobility with a fundamental band gap. We introduce its counterpart, dubbed few-layer phosphorene, as a new 2D p-type material. Same as graphene and MoS2, phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct and appreciable band-gap that depends on the number of layers. Our transport studies indicate a carrier mobility that reflects its structural anisotropy and is superior to MoS2. At room temperature, our phosphorene field-effect transistors with 1.0 um channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm2/Vs, and an on/off ratio up to 1E4. We demonstrate the possibility of phosphorene integration by constructing the first 2D CMOS inverter of phosphorene PMOS and MoS2 NMOS transistors.

3,846 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations