scispace - formally typeset
Search or ask a question
Author

Yung Woo Park

Bio: Yung Woo Park is an academic researcher from Seoul National University. The author has contributed to research in topics: Carbon nanotube & Graphene. The author has an hindex of 40, co-authored 145 publications receiving 9273 citations. Previous affiliations of Yung Woo Park include Max Planck Society & Florida State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a metal-to-insulator transition at dopant concentrations near 1% was shown for polyacetylene, a new class of conducting polymers in which the electrical conductivity can be systematically and continuously varied over a range of eleven orders of magnitude.
Abstract: Doped polyacetylene forms a new class of conducting polymers in which the electrical conductivity can be systematically and continuously varied over a range of eleven orders of magnitude. Transport studies and far-infrared transmission measurements imply a metal-to-insulator transition at dopant concentrations near 1%.

2,945 citations

Journal ArticleDOI
TL;DR: Novel carbon-based microporous nanoplates containing numerous heteroatoms (H-CMNs) are fabricated from regenerated silk fibroin by the carbonization and activation of KOH to exhibit superior electrochemical performance.
Abstract: Novel carbon-based microporous nanoplates containing numerous heteroatoms (H-CMNs) are fabricated from regenerated silk fibroin by the carbonization and activation of KOH. The H-CMNs exhibit superior electrochemical performance, displaying a specific capacitance of 264 F/g in aqueous electrolytes, a specific energy of 133 Wh/kg, a specific power of 217 kW/kg, and a stable cycle life over 10000 cycles.

469 citations

Journal ArticleDOI
TL;DR: The SOCl2-induced conductivity increase by p-type doping of the pristine material is interpreted as a Fermi level shift into the valence band, and is consistent with the temperature dependence of the thermopower.
Abstract: Chemical modification by SOCl2 of an entangled network of purified single-wall carbon nanotubes, also known as 'bucky paper', is reported to profoundly change the electrical and mechanical properties of this system. Four-probe measurements indicate a conductivity increase by up to a factor of 5 at room temperature and an even more pronounced increase at lower temperatures. This chemical modification also improves the mechanical properties of SWNT networks. Whereas the pristine sample shows an overall semiconducting character, the modified material behaves as a metal. The effect of SOCl2 is studied in terms of chemical doping of the nanotube network. We identified the microscopic origin of these changes using SEM, XPS, NEXAFS, EDX, and Raman spectroscopy measurements and ab initio calculations. We interpret the SOCl2-induced conductivity increase by p-type doping of the pristine material. This conclusion is reached by electronic structure calculations, which indicate a Fermi level shift into the valence band, and is consistent with the temperature dependence of the thermopower.

337 citations

Journal ArticleDOI
TL;DR: In this article, the electrical conductivity of the halogen doped transpolyacetylene system, (CH)x, was studied in terms of a model of the doping process based on charge transfer.
Abstract: A study of the electrical conductivity of the halogen doped transpolyacetylene system, (CH)x, is reported. When films of trans‐ (CH)x are exposed to chlorine, bromine, or iodine vapor, uptake of halogen occurs; and the conductivity increases markedly, over eleven orders of magnitude in the case of iodine. The behavior of the halogenated polyacetylene is like that of a series of semiconductors with activation energies which vary with halogen content. The results are discussed in terms of a model of the doping process based on charge transfer.

335 citations


Cited by
More filters
Journal ArticleDOI
14 Jan 1999-Nature
TL;DR: Research in the use of organic polymers as active semiconductors in light-emitting diodes has advanced rapidly, and prototype devices now meet realistic specifications for applications.
Abstract: Research in the use of organic polymers as the active semiconductors in light-emitting diodes has advanced rapidly, and prototype devices now meet realistic specifications for applications. These achievements have provided insight into many aspects of the background science, from design and synthesis of materials, through materials fabrication issues, to the semiconductor physics of these polymers.

5,653 citations

Journal ArticleDOI
TL;DR: Electronic Coupling in Oligoacene Derivatives: Factors Influencing Charge Mobility, and the Energy-Splitting-in-Dimer Method 3.1.
Abstract: 2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The Energy-Splitting-in-Dimer Method 936 3.1.2. The Orthogonality Issue 937 3.1.3. Impact of the Site Energy 937 3.1.4. Electronic Coupling in Oligoacene Derivatives 938

3,635 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

Journal ArticleDOI
TL;DR: In this paper, an extended account of the various chemical strategies for grafting polymers onto carbon nanotubes and the manufacturing of carbon-nanotube/polymer nanocomposites is given.

2,766 citations

Journal ArticleDOI
TL;DR: The latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications are reviewed and the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour is clarified for comparison.
Abstract: Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

2,698 citations