scispace - formally typeset
Search or ask a question
Author

Yunhong Wang

Bio: Yunhong Wang is an academic researcher from Beihang University. The author has contributed to research in topics: Facial recognition system & Feature extraction. The author has an hindex of 56, co-authored 489 publications receiving 16069 citations. Previous affiliations of Yunhong Wang include Chinese Academy of Sciences & Peking University.


Papers
More filters
Journal ArticleDOI
TL;DR: A semantic segmentation neural network, which combines the strengths of residual learning and U-Net, is proposed for road area extraction, which outperforms all the comparing methods and demonstrates its superiority over recently developed state of the arts methods.
Abstract: Road extraction from aerial images has been a hot research topic in the field of remote sensing image analysis. In this letter, a semantic segmentation neural network, which combines the strengths of residual learning and U-Net, is proposed for road area extraction. The network is built with residual units and has similar architecture to that of U-Net. The benefits of this model are twofold: first, residual units ease training of deep networks. Second, the rich skip connections within the network could facilitate information propagation, allowing us to design networks with fewer parameters, however, better performance. We test our network on a public road data set and compare it with U-Net and other two state-of-the-art deep-learning-based road extraction methods. The proposed approach outperforms all the comparing methods, which demonstrates its superiority over recently developed state of the arts.

1,564 citations

Journal ArticleDOI
TL;DR: A bank of spatial filters, whose kernels are suitable for iris recognition, is used to capture local characteristics of the iris so as to produce discriminating texture features and results show that the proposed method has an encouraging performance.
Abstract: With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention over the past decade. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This paper focuses on the last issue and describes a new scheme for iris recognition from an image sequence. We first assess the quality of each image in the input sequence and select a clear iris image from such a sequence for subsequent recognition. A bank of spatial filters, whose kernels are suitable for iris recognition, is then used to capture local characteristics of the iris so as to produce discriminating texture features. Experimental results show that the proposed method has an encouraging performance. In particular, a comparative study of existing methods for iris recognition is conducted on an iris image database including 2,255 sequences from 213 subjects. Conclusions based on such a comparison using a nonparametric statistical method (the bootstrap) provide useful information for further research.

1,052 citations

Book ChapterDOI
08 Sep 2018
TL;DR: Zhang et al. as discussed by the authors proposed a novel Receptive Fields (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the feature discriminability and robustness.
Abstract: Current top-performing object detectors depend on deep CNN backbones, such as ResNet-101 and Inception, benefiting from their powerful feature representations but suffering from high computational costs. Conversely, some lightweight model based detectors fulfil real time processing, while their accuracies are often criticized. In this paper, we explore an alternative to build a fast and accurate detector by strengthening lightweight features using a hand-crafted mechanism. Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the feature discriminability and robustness. We further assemble RFB to the top of SSD, constructing the RFB Net detector. To evaluate its effectiveness, experiments are conducted on two major benchmarks and the results show that RFB Net is able to reach the performance of advanced very deep detectors while keeping the real-time speed. Code is available at https://github.com/ruinmessi/RFBNet.

1,028 citations

Journal ArticleDOI
TL;DR: The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris.
Abstract: Unlike other biometrics such as fingerprints and face, the distinct aspect of iris comes from randomly distributed features. This leads to its high reliability for personal identification, and at the same time, the difficulty in effectively representing such details in an image. This paper describes an efficient algorithm for iris recognition by characterizing key local variations. The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris. The whole procedure of feature extraction includes two steps: 1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image; 2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features. We also present a fast matching scheme based on exclusive OR operation to compute the similarity between a pair of position sequences. Experimental results on 2 255 iris images show that the performance of the proposed method is encouraging and comparable to the best iris recognition algorithm found in the current literature.

999 citations

Journal ArticleDOI
01 Nov 2011
TL;DR: As a typical application of the LBP approach, LBP-based facial image analysis is extensively reviewed, while its successful extensions, which deal with various tasks of facial imageAnalysis, are also highlighted.
Abstract: Local binary pattern (LBP) is a nonparametric descriptor, which efficiently summarizes the local structures of images. In recent years, it has aroused increasing interest in many areas of image processing and computer vision and has shown its effectiveness in a number of applications, in particular for facial image analysis, including tasks as diverse as face detection, face recognition, facial expression analysis, and demographic classification. This paper presents a comprehensive survey of LBP methodology, including several more recent variations. As a typical application of the LBP approach, LBP-based facial image analysis is extensively reviewed, while its successful extensions, which deal with various tasks of facial image analysis, are also highlighted.

895 citations


Cited by
More filters
Posted Content
TL;DR: This work uses new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, C mBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100.
Abstract: There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features operate on certain models exclusively and for certain problems exclusively, or only for small-scale datasets; while some features, such as batch-normalization and residual-connections, are applicable to the majority of models, tasks, and datasets. We assume that such universal features include Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) and Mish-activation. We use new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP (65.7% AP50) for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100. Source code is at this https URL

5,709 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

01 Jan 2006

3,012 citations