scispace - formally typeset
Search or ask a question
Author

Yuno Lee

Bio: Yuno Lee is an academic researcher from Gyeongsang National University. The author has contributed to research in topics: Pharmacophore & Virtual screening. The author has an hindex of 16, co-authored 55 publications receiving 636 citations. Previous affiliations of Yuno Lee include Chemical Bank & Korea Institute for Advanced Study.


Papers
More filters
Journal ArticleDOI
TL;DR: This work provides a theoretical basis for determination of hydration radius, which is critical for accurately modeling the water dynamics around multivalent ions, and hence in describing all electrostatically driven events such as ribozyme folding and catalysis.
Abstract: Metal ions play a vital role in many biological processes. An important factor in these processes is the dynamics of exchange between ion bound-water molecules and the bulk. Although structural and dynamical properties of labile waters bound to metal ions, such as Na+ and Ca2+, can be elucidated using molecular dynamics simulations, direct evaluation of rates of exchange of waters rigidly bound to high charge density Mg2+, has been elusive. Here, we report a universal relationship, allowing us to determine the water exchange time on metal ions as a function of valence and hydration radius. The proposed relationship, which covers times spanning 14 orders of magnitude, highlights the ultrasensitivity of water lifetime to the ion size, as exemplified by divalent ions, Ca2+ (∼100 ps) and Mg2+ (∼1.5 μs). We show that even when structures, characterized by radial distributions are similar, a small difference in hydration radius leads to a qualitatively different (associative or dissociative) mechanism of water ...

41 citations

Journal ArticleDOI
TL;DR: Two pharmacophore models containing six and five pharmacophoric features, respectively, are developed using the representative structures from two molecular dynamic simulations performed in Gromacs 4.0.5 package to facilitate the future discovery of HDAC8 inhibitors.
Abstract: Histone deacetylase 8 (HDAC8) is an enzyme involved in deacetylating the amino groups of terminal lysine residues, thereby repressing the transcription of various genes including tumor suppressor gene. The over expression of HDAC8 was observed in many cancers and thus inhibition of this enzyme has emerged as an efficient cancer therapeutic strategy. In an effort to facilitate the future discovery of HDAC8 inhibitors, we developed two pharmacophore models containing six and five pharmacophoric features, respectively, using the representative structures from two molecular dynamic (MD) simulations performed in Gromacs 4.0.5 package. Various analyses of trajectories obtained from MD simulations have displayed the changes upon inhibitor binding. Thus utilization of the dynamically-responded protein structures in pharmacophore development has the added advantage of considering the conformational flexibility of protein. The MD trajectories were clustered based on single-linkage method and representative structures were taken to be used in the pharmacophore model development. Active site complimenting structure-based pharmacophore models were developed using Discovery Studio 2.5 program and validated using a dataset of known HDAC8 inhibitors. Virtual screening of chemical database coupled with drug-like filter has identified drug-like hit compounds that match the pharmacophore models. Molecular docking of these hits reduced the false positives and identified two potential compounds to be used in future HDAC8 inhibitor design.

40 citations

Journal ArticleDOI
TL;DR: The results provide a significant implication that AtObgC as a chloroplast targeting GTPase plays an important role at the early embryogenesis by exerting its function in chloroplasts protein synthesis.
Abstract: Obg is a ribosome-associated GTPase essential for bacterial viability and is conserved in most organisms, from bacteria to eukaryotes. Obg is also expressed in plants, which predicts an important role for this molecule in plant viability; however, the functions of the plant Obg homologs have not been reported. Here, we first identified Arabidopsis AtObgC as a plant chloroplast-targeting Obg and elucidated its molecular biological and physiological properties. AtObgC encodes a plant-specific Obg GTPase that contains an N-terminal region for chloroplast targeting and has intrinsic GTP hydrolysis activity. A targeting assay using a few AtObgC N-terminal truncation mutants revealed that AtObgC localizes to chloroplasts and its transit peptide consists of more than 50 amino acid residues. Interestingly, GFP-fused full-length AtObgC exhibited a punctate staining pattern in chloroplasts of Arabidopsis protoplasts, which suggests a dimerization or multimerization of AtObgC. Moreover, its Obg fold was indispensable for the generation of the punctate staining pattern, and thus, was supposed to be important for such oligomerization of AtObgC by mediating the protein-protein interaction. In addition, the T-DNA insertion AtObgC null mutant exhibited an embryonic lethal phenotype that disturbed the early stage of embryogenesis. Altogether, our results provide a significant implication that AtObgC as a chloroplast targeting GTPase plays an important role at the early embryogenesis by exerting its function in chloroplast protein synthesis.

38 citations

Journal ArticleDOI
04 Sep 2012-PLOS ONE
TL;DR: RNA-Seq revealed that selective nsSNVs were associated with meat quality traits that could be useful for successful marker-assisted selection in pigs and also represents a useful resource to enhance understanding of protein folding, substrate specificity, and the evolution of enzymes such as carbonyl reductase.
Abstract: Changes in meat quality traits are strongly associated with alterations in postmortem metabolism which depend on genetic variations, especially nonsynonymous single nucleotide variations (nsSNVs) having critical effects on protein structure and function. To selectively identify metabolism-related nsSNVs, next-generation transcriptome sequencing (RNA-Seq) was carried out using RNAs from porcine liver, which contains a diverse range of metabolic enzymes. The multiplex SNV genotyping analysis showed that various metabolism-related genes had different nsSNV alleles. Moreover, many nsSNVs were significantly associated with multiple meat quality traits. Particularly, ch7:g.22112616A>G SNV was identified to create a single amino acid change (Thr/Ala) at the 145th residue of H1.3-like protein, very close to the putative 147th threonine phosphorylation site, suggesting that the nsSNV may affect multiple meat quality traits by affecting the epigenetic regulation of postmortem metabolism-related gene expression. Besides, one nonsynonymous variation, probably generated by gene duplication, led to a stop signal in porcine testicular carbonyl reductase (PTCR), resulting in a C-terminal (E281-A288) deletion. Molecular docking and energy minimization calculations indicated that the binding affinity of wild-type PTCR to 5α-DHT, a C21-steroid, was superior to that of C-terminal-deleted PTCR or human carbonyl reductase, which was very consistent with experimental data, reported previously. Furthermore, P284 was identified as an important residue mediating the specific interaction between PTCR and 5α-DHT, and phylogenetic analysis showed that P284 is an evolutionarily conserved residue among animal carbonyl reductases, which suggests that the C-terminal tails of these reductases may have evolved under evolutionary pressure to increase the substrate specificity for C21-steroids and facilitate metabolic adaptation. Altogether, our RNA-Seq revealed that selective nsSNVs were associated with meat quality traits that could be useful for successful marker-assisted selection in pigs and also represents a useful resource to enhance understanding of protein folding, substrate specificity, and the evolution of enzymes such as carbonyl reductase.

37 citations

Journal ArticleDOI
TL;DR: Results suggest that HcAA10-2 is a novel multifunctional modular AA10 protein possessing amorphogenesis, weak endoglucanase, and oxidative cleavage activities useful for efficient degradation of crystalline cellulose.
Abstract: The modular auxiliary activity (AA) family of proteins is believed to cause amorphogenesis in addition to oxidative cleavage of crystalline cellulose although the supporting evidence is limited. HcAA10-2 is a modular AA10 family protein (58 kDa) composed of a AA10 module and a family two carbohydrate binding module (CBM2), joined by a long stretch of 222 amino acids of unknown function. The protein was expressed in Escherichia coli and purified to homogeneity. Scanning electron microscopy and X-ray diffraction analysis of Avicel treated with HcAA10-2 provided evidence for the disruption of the cellulose microfibrils (“amorphogenesis”) and reduction of the crystallinity index, resulting in a twofold increase of cellulase adsorption on the polysaccharide surface. HcAA10-2 exhibited weak endoglucanase-like activity toward soluble cellulose and cello-oligosaccharides with an optimum at pH 6.5 and 45 °C. HcAA10-2 catalyzed oxidative cleavage of crystalline cellulose released native and oxidized cello-oligosaccharides in the presence of copper and an electron donor such as ascorbic acid. Multiple sequence alignment indicated that His1, His109, and Phe197 in the AA10 module formed the conserved copper-binding site. The reducing sugar released from Avicel by the endoglucanase Cel5 and Celluclast accompanying HcAA10-2 was increased by four- and sixfold, respectively. Moreover, HcAA10-2 and Celluclast acted synergistically on pretreated wheat straw biomass resulting in a threefold increase in reducing sugar than Celluclast alone. Taken together, these results suggest that HcAA10-2 is a novel multifunctional modular AA10 protein possessing amorphogenesis, weak endoglucanase, and oxidative cleavage activities useful for efficient degradation of crystalline cellulose.

31 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: Four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications are summarized as a guide to discover additional HDAC inhibitor-based therapies with greater therapeutic utility.
Abstract: Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.

569 citations

BookDOI
01 Jan 1973

430 citations