scispace - formally typeset
Search or ask a question
Author

Yuntao Dai

Bio: Yuntao Dai is an academic researcher from Peking Union Medical College. The author has contributed to research in topics: Decoction & Medicine. The author has an hindex of 14, co-authored 36 publications receiving 3808 citations. Previous affiliations of Yuntao Dai include Leiden University & International Council on Mining and Metals.

Papers
More filters
Journal ArticleDOI
TL;DR: Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.

1,614 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied metabolic networks and the reactions of organisms to various external conditions and showed that metabolic networks are a major tool for studying the metabolism of organisms and cells, and through this approach much has been learned about metabolic networks.
Abstract: Over the past decade, metabolomics has developed into a major tool for studying the metabolism of organisms and cells, and through this approach much has been learned about metabolic networks and the reactions of organisms to various external conditions ([Lay et al., 2006][1]). Most of this work

801 citations

Journal ArticleDOI
TL;DR: The dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin are explored and provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics.

710 citations

Journal ArticleDOI
TL;DR: The potential of NADES for applications involving the extraction of bioactive compounds from natural sources is revealed and it is revealed that the extractability of both polar and less polar metabolites was greater with NADES than conventional solvents.
Abstract: Developing green solvents with low toxicity and cost is an important issue for the biochemical industry. Synthetic ionic liquids and deep eutectic solvents have received considerable attention due to their negligible volatility at room temperature, high solubilization ability, and tunable selectivity. However, the potential toxicity of the synthetic ionic liquids and the solid state at room temperature of most deep eutectic solvents hamper their application as extraction solvents. In this study, a wide range of recently discovered natural ionic liquids and deep eutectic solvents (NADES) composed of natural compounds were investigated for the extraction of phenolic compounds of diverse polarity. Safflower was selected as a case study because its aromatic pigments cover a wide range of polarities. Many advantageous features of NADES (such as their sustainability, biodegradability combined with acceptable pharmaceutical toxicity profiles, and their high solubilization power of both polar and nonpolar compounds) suggest their potential as green solvents for extraction. Experiments with different NADES and multivariate data analysis demonstrated that the extractability of both polar and less polar metabolites was greater with NADES than conventional solvents. The water content in NADES proved to have the biggest effect on the yield of phenolic compounds. Most major phenolic compounds were recovered from NADES with a yield between 75% and 97%. This study reveals the potential of NADES for applications involving the extraction of bioactive compounds from natural sources.

484 citations

Journal ArticleDOI
TL;DR: This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts.
Abstract: Mixtures of solid chemicals may become liquid under certain conditions. These liquids are characterized by the formation of strong ionic (ionic liquids) or hydrogen bonds (deep eutectic solvents). Due to their extremely low vapor pressure, they are now widely used in polymer chemistry and synthetic organic chemistry, yet little attention has been paid to their use as extraction solvents of natural products. This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts. Additionally, various factors affecting extraction features of ionic liquids and deep eutectic solvents, as well as potential useful technologies including microwave and ultrasound to increase the extraction efficiency, are discussed.

362 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: All works discussed in this review aim at demonstrating that Deep Eutectic Solvents not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.
Abstract: Within the framework of green chemistry, solvents occupy a strategic place. To be qualified as a green medium, these solvents have to meet different criteria such as availability, non-toxicity, biodegradability, recyclability, flammability, and low price among others. Up to now, the number of available green solvents are rather limited. Here we wish to discuss a new family of ionic fluids, so-called Deep Eutectic Solvents (DES), that are now rapidly emerging in the current literature. A DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions, to form a eutectic mixture with a melting point lower than that of each individual component. DESs are generally liquid at temperatures lower than 100 °C. These DESs exhibit similar physico-chemical properties to the traditionally used ionic liquids, while being much cheaper and environmentally friendlier. Owing to these remarkable advantages, DESs are now of growing interest in many fields of research. In this review, we report the major contributions of DESs in catalysis, organic synthesis, dissolution and extraction processes, electrochemistry and material chemistry. All works discussed in this review aim at demonstrating that DESs not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.

3,325 citations

Journal ArticleDOI
TL;DR: Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.

1,614 citations

Journal ArticleDOI
TL;DR: Deep Eutectic Solvents (DES) as discussed by the authors are a class of solvents that can be defined as a mixture of two or more components, which at a particular composition present a high melting point depression becoming liquids at room temperature.
Abstract: Green technology actively seeks new solvents to replace common organic solvents that present inherent toxicity and have high volatility, leading to evaporation of volatile organic compounds to the atmosphere. Over the past two decades, ionic liquids (ILs) have gained enormous attention from the scientific community, and the number of reported articles in the literature has grown exponentially. Nevertheless, IL “greenness” is often challenged, mainly due to their poor biodegradability, biocompatibility, and sustainability. An alternative to ILs are deep eutectic solvents (DES). Deep eutectic solvents are defined as a mixture of two or more components, which may be solid or liquid and that at a particular composition present a high melting point depression becoming liquids at room temperature. When the compounds that constitute the DES are primary metabolites, namely, aminoacids, organic acids, sugars, or choline derivatives, the DES are so called natural deep eutectic solvents (NADES). NADES fully represen...

1,439 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities, and discuss the potential of using natural products as drug leads.
Abstract: Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities. Natural products have historically made a major contribution to pharmacotherapy, but also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization. This Review discusses recent technological developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — that are enabling a revitalization of natural product-based drug discovery.

1,297 citations