scispace - formally typeset
Search or ask a question
Author

Yupeng Wang

Other affiliations: University of Minnesota
Bio: Yupeng Wang is an academic researcher from Peking Union Medical College. The author has contributed to research in topics: Pyroptosis & Inflammasome. The author has an hindex of 7, co-authored 9 publications receiving 2323 citations. Previous affiliations of Yupeng Wang include University of Minnesota.

Papers
More filters
Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: It is shown that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS, which represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.
Abstract: The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.

1,554 citations

Journal ArticleDOI
01 May 2017-Nature
TL;DR: It is shown that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis, suggesting that casp enzyme activation can trigger necrosis by cleaving G SDME and offer new insights into cancer chemotherapy.
Abstract: Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme-/- (also known as Dfna5-/-) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.

1,458 citations

Journal ArticleDOI
29 May 2020-Science
TL;DR: It is shown that granzyme A cleaves and activates gasdermin B (GSDMB), a central player in the highly inflammatory cell death process known as pyroptosis, suggesting that this pathway may be a target for future cancer immunotherapies.
Abstract: Cytotoxic lymphocyte-mediated immunity relies on granzymes. Granzymes are thought to kill target cells by inducing apoptosis, although the underlying mechanisms are not fully understood. Here, we report that natural killer cells and cytotoxic T lymphocytes kill gasdermin B (GSDMB)-positive cells through pyroptosis, a form of proinflammatory cell death executed by the gasdermin family of pore-forming proteins. Killing results from the cleavage of GSDMB by lymphocyte-derived granzyme A (GZMA), which unleashes its pore-forming activity. Interferon-γ (IFN-γ) up-regulates GSDMB expression and promotes pyroptosis. GSDMB is highly expressed in certain tissues, particularly digestive tract epithelia, including derived tumors. Introducing GZMA-cleavable GSDMB into mouse cancer cells promotes tumor clearance in mice. This study establishes gasdermin-mediated pyroptosis as a cytotoxic lymphocyte-killing mechanism, which may enhance antitumor immunity.

599 citations

Journal ArticleDOI
11 Mar 2020-Nature
TL;DR: In mouse models of cancer, a biorthogonal chemical system based on desilylation catalysed by phenylalanine trifluoroborate enables the controlled release of gasdermin to induce pyroptosis selectively in tumour cells, suggesting that pyroPTosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade.
Abstract: Bioorthogonal chemistry capable of operating in live animals is needed to investigate biological processes such as cell death and immunity. Recent studies have identified a gasdermin family of pore-forming proteins that executes inflammasome-dependent and -independent pyroptosis1-5. Pyroptosis is proinflammatory, but its effect on antitumour immunity is unknown. Here we establish a bioorthogonal chemical system, in which a cancer-imaging probe phenylalanine trifluoroborate (Phe-BF3) that can enter cells desilylates and 'cleaves' a designed linker that contains a silyl ether. This system enabled the controlled release of a drug from an antibody-drug conjugate in mice. When combined with nanoparticle-mediated delivery, desilylation catalysed by Phe-BF3 could release a client protein-including an active gasdermin-from a nanoparticle conjugate, selectively into tumour cells in mice. We applied this bioorthogonal system to gasdermin, which revealed that pyroptosis of less than 15% of tumour cells was sufficient to clear the entire 4T1 mammary tumour graft. The tumour regression was absent in immune-deficient mice or upon T cell depletion, and was correlated with augmented antitumour immune responses. The injection of a reduced, ineffective dose of nanoparticle-conjugated gasdermin along with Phe-BF3 sensitized 4T1 tumours to anti-PD1 therapy. Our bioorthogonal system based on Phe-BF3 desilylation is therefore a powerful tool for chemical biology; our application of this system suggests that pyroptosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade.

447 citations

Journal ArticleDOI
05 Mar 2020-Cell
TL;DR: This study shows site-specific caspase-4/11 autoprocessing, generating a p10 product, is required and sufficient for cleaving GSDMD and inducing pyroptosis and reveals an unprecedented substrate-targeting mechanism for caspases.

301 citations


Cited by
More filters
Journal ArticleDOI
29 Oct 2015-Nature
TL;DR: Gasdermin D (Gsdmd) is identified by genome-wide clustered regularly interspaced palindromic repeat-Cas9 nuclease screens of caspase-11- and caspasing-1-mediated pyroptosis in mouse bone marrow macrophages to offer insight into inflammasome-mediated immunity/diseases and change the understanding of pyroPTosis and programmed necrosis.
Abstract: Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.

3,554 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
29 Oct 2015-Nature
TL;DR: It is shown that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation and a key mediator of the host response against Gram-negative bacteria.
Abstract: Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.

2,349 citations

Journal ArticleDOI
TL;DR: Increasing evidence in mouse models strongly implicates an involvement of the inflammasome in the initiation or progression of diseases with a high impact on public health, such as metabolic disorders and neurodegenerative diseases.
Abstract: The inflammasomes are innate immune system receptors and sensors that regulate the activation of caspase-1 and induce inflammation in response to infectious microbes and molecules derived from host proteins. They have been implicated in a host of inflammatory disorders. Recent developments have greatly enhanced our understanding of the molecular mechanisms by which different inflammasomes are activated. Additionally, increasing evidence in mouse models, supported by human data, strongly implicates an involvement of the inflammasome in the initiation or progression of diseases with a high impact on public health, such as metabolic disorders and neurodegenerative diseases. Finally, recent developments pointing toward promising therapeutics that target inflammasome activity in inflammatory diseases have been reported. This review will focus on these three areas of inflammasome research.

2,291 citations

Journal ArticleDOI
TL;DR: The NLRP3 inflammasome mediates pro-inflammatory responses and pyroptotic cell death and how it is being targeted to treat inflammatory diseases is described.
Abstract: NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical bases of NLRP3 activation and regulation and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.

2,097 citations