scispace - formally typeset
Search or ask a question
Author

Yuqian Dou

Other affiliations: Fudan University
Bio: Yuqian Dou is an academic researcher from Northeastern University (China). The author has contributed to research in topics: Carbon & Polyaniline. The author has an hindex of 8, co-authored 8 publications receiving 2988 citations. Previous affiliations of Yuqian Dou include Fudan University.

Papers
More filters
Journal ArticleDOI
TL;DR: In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Abstract: Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

2,497 citations

Journal ArticleDOI
01 Apr 2011-Carbon
TL;DR: In this article, a mesoporous carbon material with hierarchical foam-like pore structures was synthesized by a dual-templating strategy using phenolic resol as a carbon source, Pluronic F127 and spherical silica mesocellular foams (Si-MCFs) as the soft and hard template, respectively.

298 citations

Journal ArticleDOI
01 Feb 2011-Carbon
TL;DR: Ordered mesoporous carbon/nanoparticle nickel composites have been synthesized via multi-component co-assembly strategy associated with a direct carbonization process from resol, tetraethyl orthosilicate, Ni(NO 3 ) 2 ·6H 2 O and subsequent silicates removal with NaOH solution as discussed by the authors.

143 citations

Journal ArticleDOI
TL;DR: In this article, the effects of iron loading on mesoporous carbon composites were investigated by SAXS, WXRD, TEM, N2 sorption, TG and magnetometer measurements.
Abstract: Ordered mesoporous carbon materials with magnetic frameworks have been synthesized via a “one-pot” block-copolymer self-assembly strategy associated with a direct carbonization process from resol, ferric citrate and triblock copolymer F127. The effects of iron loading on framework, pore features and magnetic properties of the resultant mesostructured maghemite/carbon composites were investigated by SAXS, WXRD, TEM, N2 sorption, TG and magnetometer measurements. The results show that the mesoporous nanocomposites with a low γ-Fe2O3 content (such as 9.0 wt%) possess an ordered 2-D hexagonal (p6mm) structure, uniform mesopores (∼4.0 nm), high surface areas (up to 590 m2/g) and pore volumes (up to 0.48 cm3/g). Maghemite nanocrystals with a small particle size (∼9.3 nm) are confined in the matrix of amorphous carbon frameworks. With the increase in γ-Fe2O3 content, the surface area and pore volume of the nanocomposites decrease. The particle size of the γ-Fe2O3nanocrystals increases up to 13.1 nm. The iron oxide particles can extend from the carbon walls into mesopore channels, and hence bring a rough pore surface and gradually break down the mesoscopic regularity. The maghemite/carbon nanocomposites exhibit excellent superparamagnetic behaviors. The saturation magnetization strength can be easily adjusted from 2.5 to 12.1 emu/g by increasing the content of γ-Fe2O3. Further H2O2oxidation treatment of the magnetic nanocomposites endows plenty of oxygen-containing functional groups on the carbon surface, which improves their hydrophilic properties efficiently. The γ-Fe2O3 particles, embedding into the carbon matrix, show high stability during the H2O2oxidation process. Such modified nanocomposites with hydrophilic and magnetic framework show evidently improved adsorption properties of water and fuchsin base dye molecules in water and an easy separation procedure.

139 citations

Journal ArticleDOI
TL;DR: In this article, a review of carbon-based electrode materials for electrochemical capacitors is presented, including activated carbons, carbon nanotubes, and template-synthesized porous carbons.
Abstract: Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

101 citations


Cited by
More filters
Journal ArticleDOI
24 Jun 2011-Science
TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Abstract: Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

5,486 citations

Journal ArticleDOI
TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.

2,790 citations

Journal ArticleDOI
TL;DR: The latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications are reviewed and the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour is clarified for comparison.
Abstract: Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

2,698 citations

Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations