scispace - formally typeset
Search or ask a question
Author

Yuri S. Kivshar

Bio: Yuri S. Kivshar is an academic researcher from Australian National University. The author has contributed to research in topics: Metamaterial & Soliton. The author has an hindex of 126, co-authored 1845 publications receiving 79415 citations. Previous affiliations of Yuri S. Kivshar include Technische Universität Darmstadt & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors show that strong near-field coupling effects can be observed for dissimilar Mie-resonant dielectric meta-atoms and demonstrate that both properties and functionalities of high-index all-dielectric photonic structures can be controlled by engineering their geometry and changing the distance between meta atoms thus enhancing the effective magnetic response.
Abstract: We reveal that strong near-field coupling effects can be observed for dissimilar Mie-resonant dielectric meta-atoms and demonstrate that both properties and functionalities of high-index all-dielectric photonic structures can be controlled by engineering their geometry and changing the distance between meta-atoms thus enhancing the effective magnetic response. We describe dielectric dimers, quadrumers, and metasurfaces with a staggered structure of optically induced magnetic moments (the so-called ”optical antiferromagnetism”) and also demonstrate that a strong toroidal response can be introduced in metasurfaces by engineering asymmetric nanoparticle quadrumers as building blocks for novel designs in all-dielectric resonant meta-optics.

43 citations

Journal ArticleDOI
TL;DR: It is shown that in nonlinear discrete systems localized modes may exist in the form of self-induced gap solitons, when one group of particles in the lattice plays a role of an effective periodic potential to other particles supporting a spatially localized oscillation.
Abstract: It is shown that in nonlinear discrete systems localized modes may exist in the form of self-induced gap solitons. Such structures appear due to a nonlinearity-induced gap in the cw spectrum, when one group of particles in the lattice plays a role of an effective periodic potential to other particles supporting a spatially localized oscillation. Two examples are considered and exact soliton solutions describing this type of localized modes are presented.

43 citations

Journal ArticleDOI
TL;DR: In this paper, the dispersion properties of TM-polarized electromagnetic waves guided by a multilayer graphene metamaterial were studied and it was shown that both dispersion and localization of the guided modes can be efficiently controlled by changing the number of layers in the structure.
Abstract: We study dispersion properties of TM-polarized electromagnetic waves guided by a multilayer graphene metamaterial. We demonstrate that both dispersion and localization of the guided modes can be efficiently controlled by changing the number of layers in the structure. Remarkably, we find that in the long wavelength limit, the dispersion of the fundamental mode of the N-layer graphene structure coincides with the dispersion of a plasmon mode supported by a single graphene layer, but with N times larger conductivity. We also compare our exact dispersion relations with the results provided by the effective media model.

43 citations

Posted Content
TL;DR: In this paper, a quantitative model is developed to identify and disentangle the three physical processes that govern the ultrafast changes of the nanobrick optical properties, namely two-photon absorption, free-carrier relaxation, and lattice heating.
Abstract: We report on the broadband transient optical response from anisotropic nanobrick amorphous silicon particles, exhibiting Mie-type resonances. A quantitative model is developed to identify and disentangle the three physical processes that govern the ultrafast changes of the nanobrick optical properties, namely two-photon absorption, free-carrier relaxation, and lattice heating. We reveal a set of operating windows where ultrafast all-optical modulation of transmission is achieved with full return to zero in 20 ps. This is made possible due to the interplay between the competing nonlinear processes and despite the slow (nanosecond) internal lattice dynamics. The observed ultrafast switching behavior can be independently engineered for both or- thogonal polarizations using the large anisotropy of nanobricks thus allowing ultrafast anisotropy control. Our results categorically ascertain the potential of all-dielectric resonant nanophotonics as a platform for ultrafast optical devices, and reveal the pos- sibility for ultrafast polarization-multiplexed displays and polarization rotators.

42 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations