scispace - formally typeset
Search or ask a question
Author

Yuri S. Kivshar

Bio: Yuri S. Kivshar is an academic researcher from Australian National University. The author has contributed to research in topics: Metamaterial & Soliton. The author has an hindex of 126, co-authored 1845 publications receiving 79415 citations. Previous affiliations of Yuri S. Kivshar include Technische Universität Darmstadt & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
01 May 2014-Small
TL;DR: Pronounced Fano resonances are observed for a variety of lithographically-fabricated heptamer nanostructures consisting of a central particle of varying size, encircled by six nanoparticles of constant size as a result of interference of the optically-induced magnetic dipole modes of the central particle with the collective mode of the nanoparticle structure.
Abstract: I t is well-known that oligomers made of metallic nanoparticles are able to support sharp Fano resonances originating from the interference of two plasmonic resonant modes with different spectral width. While such plasmonic oligomers suffer from high dissipative losses, a new route for achieving Fano resonances in nanoparticle oligomers has opened up after the recent experimental observations of electric and magnetic resonances in low-loss dielectric nanoparticles. Here, light scattering by all-dielectric oligomers composed of silicon nanoparticles is studied experimentally for the fi rst time. Pronounced Fano resonances are observed for a variety of lithographically-fabricated heptamer nanostructures consisting of a central particle of varying size, encircled by six nanoparticles of constant size. Based on a full collective mode analysis, the origin of the observed Fano resonances is revealed as a result of interference of the optically-induced magnetic dipole mode of the central particle with the collective mode of the nanoparticle structure. This allows for effective tuning of the Fano resonance to a desired spectral position by a controlled size variation of the central particle. Such optically-induced magnetic Fano resonances in all-dielectric oligomers offer new opportunities for sensing and nonlinear applications.

173 citations

Journal ArticleDOI
TL;DR: All-dielectric nonlinear metasurfaces are designed, achieved a highly efficient wavefront control of a third-harmonic field, and the generation of nonlinear beams at a designed angle and thegeneration of non linear focusing vortex beams are demonstrated.
Abstract: Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront of parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams a...

172 citations

Journal ArticleDOI
TL;DR: It is revealed an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials.
Abstract: We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment.

172 citations

Journal ArticleDOI
TL;DR: The interference between electric dipole and magnetic dipole in individual Si nanobricks with in-plane orientation enables manipulating six bases of incident photons simultaneously to reconstructed 6-bit wavelength- and spin-dependent multicolor images.
Abstract: Nanostructured metasurfaces demonstrate extraordinary capabilities to control light at the subwavelength scale, emerging as key optical components to physical realization of multitasked devices. Progress in multitasked metasurfaces has been witnessed in making a single metasurface multitasked by mainly resorting to extra spatial freedom, for example, interleaved subarrays, different angles. However, it imposes a challenge of suppressing the cross-talk among multiwavelength without the help of extra spatial freedom. Here, we introduce an entirely novel strategy of multitasked metasurfaces with noninterleaved single-size Si nanobrick arrays and minimalist spatial freedom demonstrating massive information on 6-bit encoded color holograms. The interference between electric dipole and magnetic dipole in individual Si nanobricks with in-plane orientation enables manipulating six bases of incident photons simultaneously to reconstructed 6-bit wavelength- and spin-dependent multicolor images. Those massively reco...

171 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the Bose-Einstein condensate in a parabolic trap as a macroscopic quantum oscillator and describe its collective modes, a nonlinear generalisation of the Hermite-Gauss eigenmodes of a harmonic oscillator.

169 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations