scispace - formally typeset
Search or ask a question
Author

Yuri S. Kivshar

Bio: Yuri S. Kivshar is an academic researcher from Australian National University. The author has contributed to research in topics: Metamaterial & Soliton. The author has an hindex of 126, co-authored 1845 publications receiving 79415 citations. Previous affiliations of Yuri S. Kivshar include Technische Universität Darmstadt & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple realization of topological edge states in zigzag chains of plasmonic nanoparticles, mimicking the Kitaev model of Majorana fermions, was proposed.
Abstract: We propose a simple realization of topological edge states in zigzag chains of plasmonic nanoparticles, mimicking the Kitaev model of Majorana fermions We demonstrate the one-to-one correspondence between the coupled dipole equations in the zigzag plasmonic chain and the Bogoliubov-de-Gennes equations for the quantum wire on top of superconductor and support the analytical theory by the full-wave electromagnetic simulations We reveal that localized plasmons can be excited selectively at both edges of the zigzag chain of plasmonic nanoparticles depending on the incident plane wave polarization

145 citations

Journal ArticleDOI
TL;DR: Topology-driven tunable localization of the generated harmonic fields are demonstrated and the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners are mapped.
Abstract: We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie resonances of silicon nanoparticles. Variation of the pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform for the robust generation and transport of photons in topological photonic nanostructures.

145 citations

Journal ArticleDOI
TL;DR: This work boosts the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface, which supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs).
Abstract: Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing.

145 citations

Journal ArticleDOI
TL;DR: In this paper, the radiative decay and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial medium was studied. And the authors revealed that the Purcell enhancement factor remains finite even in the absence of losses and that it depends on the emitter size.
Abstract: We study the radiative decay and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial medium. We demonstrate that the radiative rate is strongly enhanced when the signs of the medium longitudinal and transverse dielectric constants are opposite, and that the isofrequency contour corresponds to a hyperbolic medium. We reveal that the Purcell enhancement factor remains finite even in the absence of losses and that it depends on the emitter size.

145 citations

Journal ArticleDOI
TL;DR: The optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal is studied and millisecond timescale switching between electric and magnetic resonances of the metasurface is demonstrated.
Abstract: We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation.

144 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations