scispace - formally typeset
Search or ask a question
Author

Yuri S. Kivshar

Bio: Yuri S. Kivshar is an academic researcher from Australian National University. The author has contributed to research in topics: Metamaterial & Soliton. The author has an hindex of 126, co-authored 1845 publications receiving 79415 citations. Previous affiliations of Yuri S. Kivshar include Technische Universität Darmstadt & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The existence and stability of nonlinear localized waves in a periodic medium described by the Kronig-Penney model with a nonlinear defect are analyzed and a novel type of stable nonlinear band-gap localized state is demonstrated.
Abstract: We analyze the existence and stability of nonlinear localized waves in a periodic medium described by the Kronig-Penney model with a nonlinear defect. We demonstrate the existence of a novel type of stable nonlinear band-gap localized state, and also reveal a generic physical mechanism of the oscillatory wave instabilities associated with the band-gap resonances.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications, and discuss several extensions of the conventional YagiUda antenna design for broadband and tunable operation for applications in nanophotonic circuits and photovoltaic devices.
Abstract: Conventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, nonclassical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its effi cient unidirectional light emission and enhancement. Following a brief introduction to the emerging fi eld of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices.

111 citations

Journal ArticleDOI
TL;DR: The pseudo-parity-time (pseudo-PT) symmetry in periodically modulated optical systems with balanced gain and loss is introduced and it is demonstrated that whether or not the original system is PT symmetric, the property of the PT symmetry can be manipulated by applying a periodic modulation.
Abstract: We introduce a novel concept of the pseudo-parity-time (pseudo-PT) symmetry in periodically modulated optical systems with balanced gain and loss. We demonstrate that whether or not the original system is PT symmetric, we can manipulate the property of the PT symmetry by applying a periodic modulation in such a way that the effective system derived by the high-frequency Floquet method is PT symmetric. If the original system is non-PT symmetric, the PT symmetry in the effective system will lead to quasistationary propagation that can be associated with the pseudo-PT symmetry. Our results provide a promising approach for manipulating the PT symmetry of realistic systems.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the dispersion properties of multilayered metal-dielectric metamaterials were analyzed and a nonlocal effective medium was derived to describe the effects of strong spatial dispersion in the multilayer metal dielectric structures.
Abstract: We study layered metal-dielectric structures, which can be considered as a simple example of nanostructured metamaterials. We analyze the dispersion properties of such structures and demonstrate that they show strong optical nonlocality due to excitation of surface plasmon polaritons. We derive a model of a nonlocal effective medium for describing the effects of strong spatial dispersion in the multilayered metal-dielectric metamaterials. We obtain analytical expressions for the components of the effective permittivity tensor which depend on the wave vector and reveal that spatial dispersion effects exist in both directions across and along the layers.

110 citations

Journal ArticleDOI
TL;DR: Nonlinear plasmon self-focusing in tapered metal-dielectric-metal slot waveguides is studied and it is demonstrated that, by an appropriate choice of the taper angle, the mode attenuation can be suppressed achieving stable propagation of a spatial plAsmon soliton.
Abstract: We suggest using tapered waveguides for compensating losses of surface plasmon-polaritons in order to enhance nonlinear effects at the nanoscale. We study nonlinear plasmon self-focusing in tapered metal-dielectric-metal slot waveguides and demonstrate that, by an appropriate choice of the taper angle, we can effectively suppress the mode attenuation achieving stable propagation of a spatial plasmon soliton. For larger tapering angles we observe plasmon-beam nanofocusing in both spatial dimensions.

110 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations