scispace - formally typeset
Search or ask a question
Author

Yuri S. Kivshar

Bio: Yuri S. Kivshar is an academic researcher from Australian National University. The author has contributed to research in topics: Metamaterial & Soliton. The author has an hindex of 126, co-authored 1845 publications receiving 79415 citations. Previous affiliations of Yuri S. Kivshar include Technische Universität Darmstadt & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
16 May 2004
TL;DR: In this article, the authors realize fully controlled generation of slow and immobile spatial gap solitons through two-beam mutual focusing in a periodic lattice and demonstrate the limitation of mutual beam focusing and enhanced mobility of gap solITons.
Abstract: We realize fully controlled generation of slow and immobile spatial gap solitons through two-beam mutual focusing in a periodic lattice We also predict and demonstrate the limitation of mutual beam focusing and enhanced mobility of gap solitons

93 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider multilayered metal-dielectric metamaterials composed of alternating nanolayers of two types and calculate the components of their effective dielectric permittivity tensors as functions of both frequency and wave vector.
Abstract: We consider multilayered metal-dielectric metamaterials composed of alternating nanolayers of two types and calculate the components of their effective dielectric permittivity tensors as functions of both frequency and wave vector. We demonstrate that such structures can be described as strongly nonlocal uniaxial effective media, and we analyze how the nonlocal permittivity tensor components are related to other manifestations of strong spatial dispersion in such structures, and how the resonance of permittivity depends on the propagation direction.

93 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously.
Abstract: Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking.

92 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that breaking the symmetry of an all-dielectric nanoparticle leads to a geometrically tunable magnetoelectric coupling, i.e., an omega-type bianisotropy.
Abstract: The study of high-index dielectric nanoparticles currently attracts a lot of attention. They do not suffer from absorption but promise to provide control of the properties of light comparable to plasmonic nanoparticles. To further advance the field, it is important to identify versatile dielectric nanoparticles with unconventional properties. Here, we show that breaking the symmetry of an all-dielectric nanoparticle leads to a geometrically tunable magnetoelectric coupling, i.e., an omega-type bianisotropy. The suggested nanoparticle exhibits different backscatterings and, as an interesting consequence, different optical scattering forces for opposite illumination directions. An array of such nanoparticles provides different reflection phases when illuminated from opposite directions. With a proper geometrical tuning, this bianisotropic nanoparticle is capable of providing a $2\ensuremath{\pi}$ phase change in the reflection spectrum while possessing a rather large and constant amplitude. This allows the creation of reflectarrays with near-perfect transmission out of the resonance band due to the absence of a usually employed metallic screen.

92 citations

Journal ArticleDOI
TL;DR: New type of optical vector soliton that originates from trapping of a dipole mode by the soliton-induced waveguides is found and represents a new type of extremely robust nonlinear vector structure.
Abstract: We find a new type of optical vector soliton that originates from trapping of a dipole mode by the soliton-induced waveguides. These solitons, which appear as a consequence of the vector nature of the two-component system, are more stable than the previously found optical vortex solitons and represent a new type of extremely robust nonlinear vector structure.

92 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations