scispace - formally typeset
Search or ask a question
Author

Yuri S. Kivshar

Bio: Yuri S. Kivshar is an academic researcher from Australian National University. The author has contributed to research in topics: Metamaterial & Soliton. The author has an hindex of 126, co-authored 1845 publications receiving 79415 citations. Previous affiliations of Yuri S. Kivshar include Technische Universität Darmstadt & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The Bragg scattering of light in optically induced photonic lattices is studied and revealed, both theoretically and experimentally, to reveal the key physical mechanisms which govern the nonlinear self-action of narrow beams under the combined effects of Brigh scattering and wave diffraction.
Abstract: We study, both theoretically and experimentally, the Bragg scattering of light in optically induced photonic lattices and reveal the key physical mechanisms which govern the nonlinear self-action of narrow beams under the combined effects of Bragg scattering and wave diffraction, allowing for selecting bands with different effective dispersion.

74 citations

Journal ArticleDOI
TL;DR: In this article, a double-layer graphene waveguide can operate as an efficient nonlinear optical coupler for both continuous plasmons and for subwavelength spatial optical plasmon solitons.
Abstract: We study nonlinear propagation of electromagnetic waves in two closely spaced graphene layers and demonstrate that this double-layer graphene waveguide can operate as an efficient nonlinear optical coupler for both continuous plasmons and for subwavelength spatial optical plasmon solitons. We analyze the nonlinearity-induced effects of light localization and symmetry breaking in such a graphene coupler, and predict that the interlayer power-dependent coupling provides a mechanism for optical beam control and manipulation at realistic input power levels.

73 citations

Journal ArticleDOI
TL;DR: In this paper, the defect-induced nonlinear transmission of a periodic structure created by alternating slabs of two materials with positive and negative refractive index was studied, and bistable switching and tunable transmission in an unconventional band gap was demonstrated.
Abstract: We study the defect-induced nonlinear transmission of a periodic structure created by alternating slabs of two materials with positive and negative refractive index. We demonstrate bistable switching and tunable nonlinear transmission in an unconventional band gap that corresponds to the vanishing average refractive index, and compare the observed effects for two different types of band gaps.

73 citations

Journal ArticleDOI
TL;DR: The classical lens theory is revisited and a generalized Gaussian lens equation for nonlinear imaging is suggested, verified both experimentally and analytically.
Abstract: Nonlinear metasurfaces incorporate many of the functionalities of their linear counterparts such as wavefront shaping, but simultaneously they perform nonlinear optical transformations. This dual functionality leads to a rather unintuitive physical behavior which is still widely unexplored for many photonic applications. The nonlinear processes render some basic principles governing the functionality of linear metasurfaces. Exemplarily, the superposition principle and the geometric optics approximation become not directly applicable to nonlinear metasurfaces. On the other hand, nonlinear metasurfaces facilitate new phenomena that are not possible in the linear regime. Here, we study the imaging of objects through a dielectric nonlinear metalens. We illuminate objects by infrared light and record their generated images at the visible third-harmonic wavelengths. We revisit the classical lens theory and suggest a generalized Gaussian lens equation for nonlinear imaging, verified both experimentally and analytically. We also demonstrate experimentally higher-order spatial correlations facilitated by the nonlinear metalens, resulting in additional image features.

73 citations

Journal ArticleDOI
TL;DR: It is demonstrated that topological stabilization of such nonlinear localized states can be achieved through self-trapping of truncated two-dimensional Bloch waves and numerical simulations of the beam propagation in weakly deformed lattice potentials in anisotropic photorefractive media confirm the experimental results.
Abstract: We report on the first observation of topologically stable spatially localized multivortex solitons generated in optically induced hexagonal photonic lattices. We demonstrate that topological stabilization of such nonlinear localized states can be achieved through self-trapping of truncated two-dimensional Bloch waves and confirm our experimental results by numerical simulations of the beam propagation in weakly deformed lattice potentials in anisotropic photorefractive media.

73 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations