scispace - formally typeset
Search or ask a question
Author

Yuriy A. Rossikhin

Bio: Yuriy A. Rossikhin is an academic researcher from University of Architecture, Civil Engineering and Geodesy. The author has contributed to research in topics: Fractional calculus & Surface wave. The author has an hindex of 13, co-authored 23 publications receiving 1639 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the analysis of new trends and recent results carried out during the last 10 years in the field of fractional calculus application to dynamic problems of solid mechanics.
Abstract: The present state-of-the-art article is devoted to the analysis of new trends and recent results carried out during the last 10 years in the field of fractional calculus application to dynamic problems of solid mechanics. This review involves the papers dealing with study of dynamic behavior of linear and nonlinear 1DOF systems, systems with two and more DOFs, as well as linear and nonlinear systems with an infinite number of degrees of freedom: vibrations of rods, beams, plates, shells, suspension combined systems, and multilayered systems. Impact response of viscoelastic rods and plates is considered as well. The results obtained in the field are critically estimated in the light of the present view of the place and role of the fractional calculus in engineering problems and practice. This articles reviews 337 papers and involves 27 figures. DOI: 10.1115/1.4000563

491 citations

Journal ArticleDOI
TL;DR: In this paper, the Laplace transform method is used to find the roots of algebraic equations with fractional exponents, which allows one to investigate the roots behavior in a wide range of single-mass system parameters.
Abstract: Free damped vibrations of an oscillator, whose viscoelastic properties are described in terms of the fractional calculus Kelvin-Voight model, Maxwell model, and standard linear solid model are determined. The problem is solved by the Laplace transform method. When passing from image to pre-image one is led to find the roots of an algebraic equation with fractional exponents. The method for solving such equations is proposed which allows one to investigate the roots behaviour in a wide range of single-mass system parameters. A comparison between the results obtained on the basis of the three models has been carried out. It has been shown that for all models the characteristic equations do not possess real roots, but have one pair of complex conjugates, i.e. the test single-mass systems subjected to the impulse excitation do not pass into an aperiodic regime in none of magnitudes of the relaxation and creep times. Main characteristics of vibratory motions of the single-mass system as functions of the relaxation time or creep time, which are equivalent to the temperature dependencies, are constructed and analyzed for all three models.

177 citations

Journal ArticleDOI
TL;DR: In this paper, the damping coefficient of a suspension bridge with a bisymmetric stiffening girder was investigated under the conditions of the internal resonance one-to-one.
Abstract: Free damped vibrations of a suspension bridge with a bisymmetric stiffening girder are considered under the conditions of the internal resonance one-to-one: when natural frequencies of two dominating modes--a certain mode of vertical vibrations and a certain mode of torsional vibrations--are approximately equal to each other. Damping features of the system are defined by a fractional derivative with a fractional parameter (the order of the fractional derivative) changing from zero to one. It is assumed that the amplitudes of vibrations are small but finite values, and the method of multiple scales is used as a method of solution. It is shown that in this case the amplitudes of vertical and torsional vibrations attenuate by an exponential law with the common damping ratio, which is an exponential function of the natural frequency. Analytical solitonlike solutions have been found. A numerical comparison between the theoretical results obtained and the experimental data is presented. It is shown that the theoretical and experimental investigation agree well with each other at the appropriate choice of the parameters of the exponential function determining the damping coefficient.

61 citations


Cited by
More filters
Posted Content
TL;DR: In this article, the authors review some applications of fractional calculus developed by the author (partly in collaboration with others) to treat some basic problems in continuum and statistical mechanics.
Abstract: We review some applications of fractional calculus developed by the author (partly in collaboration with others) to treat some basic problems in continuum and statistical mechanics. The problems in continuum mechanics concern mathematical modelling of viscoelastic bodies (Sect. 1), and unsteady motion of a particle in a viscous fluid, i.e. the Basset problem (Sect. 2). In the former analysis fractional calculus leads us to introduce intermediate models of viscoelasticity which generalize the classical spring-dashpot models. The latter analysis induces us to introduce a hydrodynamic model suitable to revisit in Sect. 3 the classical theory of the Brownian motion, which is a relevant topic in statistical mechanics. By the tools of fractional calculus we explain the long tails in the velocity correlation and in the displacement variance. In Sect. 4 we consider the fractional diffusion-wave equation, which is obtained from the classical diffusion equation by replacing the first-order time derivative by a fractional derivative of order $0< \beta <2$. Led by our analysis we express the fundamental solutions (the Green functions) in terms of two interrelated auxiliary functions in the similarity variable, which turn out to be of Wright type (see Appendix), and to distinguish slow-diffusion processes ($0 < \beta < 1$) from intermediate processes ($1 < \beta < 2$).

1,064 citations

Book ChapterDOI
01 Jan 2014
TL;DR: In this paper, Dzherbashian [Dzh60] defined a function with positive α 1 > 0, α 2 > 0 and real α 1, β 2, β 3, β 4, β 5, β 6, β 7, β 8, β 9, β 10, β 11, β 12, β 13, β 14, β 15, β 16, β 17, β 18, β 20, β 21, β 22, β 24
Abstract: Consider the function defined for \(\alpha _{1},\ \alpha _{2} \in \mathbb{R}\) (α 1 2 +α 2 2 ≠ 0) and \(\beta _{1},\beta _{2} \in \mathbb{C}\) by the series $$\displaystyle{ E_{\alpha _{1},\beta _{1};\alpha _{2},\beta _{2}}(z) \equiv \sum _{k=0}^{\infty } \frac{z^{k}} {\varGamma (\alpha _{1}k +\beta _{1})\varGamma (\alpha _{2}k +\beta _{2})}\ \ (z \in \mathbb{C}). }$$ (6.1.1) Such a function with positive α 1 > 0, α 2 > 0 and real \(\beta _{1},\beta _{2} \in \mathbb{R}\) was introduced by Dzherbashian [Dzh60].

919 citations

Journal ArticleDOI
TL;DR: In this paper, the real variable is replaced by a complex variable, and the factorial and related functions of the complex variable are used to solve linear differential equations of the second order.
Abstract: 1. The real variable 2. Scalars and vectors 3. Tensors 4. Matrices 5. Multiple integrals 6. Potential theory 7. Operational methods 8. Physical applications of the operational method 9. Numerical methods 10. Calculus of variations 11. Functions of a complex variable 12. Contour integration and Bromwich's integral 13. Contour integration 14. Fourier's theorem 15. The factorial and related functions 16. Solution of linear differential equations of the second order 17. Asymptotic expansions 18. The equations of potential, waves and heat conduction 19. Waves in one dimension and waves with spherical symmetry 20. Conduction of heat in one and three dimensions 21. Bessel functions 22. Applications of Bessel functions 23. The confluent hypergeometric function 24. Legendre functions and associated functions 25. Elliptic functions Notes Appendix on notation Index.

771 citations

Journal ArticleDOI
TL;DR: The main aim is to generalize the Legendre operational matrix to the fractional calculus and reduces such problems to those of solving a system of algebraic equations thus greatly simplifying the problem.
Abstract: Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equations. The fractional derivatives are described in the Caputo sense. Our main aim is to generalize the Legendre operational matrix to the fractional calculus. In this approach, a truncated Legendre series together with the Legendre operational matrix of fractional derivatives are used for numerical integration of fractional differential equations. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus greatly simplifying the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.

704 citations

Journal ArticleDOI
TL;DR: In this article, a general formulation and a solution scheme for a class of Fractional Optimal Control Problems (FOCPs) for those systems are presented, where the performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of FDEs.
Abstract: Accurate modeling of many dynamic systems leads to a set of Fractional Differential Equations (FDEs). This paper presents a general formulation and a solution scheme for a class of Fractional Optimal Control Problems (FOCPs) for those systems. The fractional derivative is described in the Riemann–Liouville sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of FDEs. The Calculus of Variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler–Lagrange equations for the FOCP. The formulation presented and the resulting equations are very similar to those that appear in the classical optimal control theory. Thus, the present formulation essentially extends the classical control theory to fractional dynamic system. The formulation is used to derive the control equations for a quadratic linear fractional control problem. An approach similar to a variational virtual work coupled with the Lagrange multiplier technique is presented to find the approximate numerical solution of the resulting equations. Numerical solutions for two fractional systems, a time-invariant and a time-varying, are presented to demonstrate the feasibility of the method. It is shown that (1) the solutions converge as the number of approximating terms increase, and (2) the solutions approach to classical solutions as the order of the fractional derivatives approach to 1. The formulation presented is simple and can be extended to other FOCPs. It is hoped that the simplicity of this formulation will initiate a new interest in the area of optimal control of fractional systems.

661 citations