scispace - formally typeset
Search or ask a question
Author

Yurong Liu

Other affiliations: Anhui Polytechnic University
Bio: Yurong Liu is an academic researcher from Yangzhou University. The author has contributed to research in topics: Linear matrix inequality & Exponential stability. The author has an hindex of 46, co-authored 116 publications receiving 8756 citations. Previous affiliations of Yurong Liu include Anhui Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: A linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the RNNs to be globally exponentially stable, and the existence and uniqueness of the equilibrium point under mild conditions is proved.

671 citations

Journal ArticleDOI
TL;DR: By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem and several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays.
Abstract: In this paper, the problem of stochastic synchronization analysis is investigated for a new array of coupled discrete-time stochastic complex networks with randomly occurred nonlinearities (RONs) and time delays. The discrete-time complex networks under consideration are subject to: (1) stochastic nonlinearities that occur according to the Bernoulli distributed white noise sequences; (2) stochastic disturbances that enter the coupling term, the delayed coupling term as well as the overall network; and (3) time delays that include both the discrete and distributed ones. Note that the newly introduced RONs and the multiple stochastic disturbances can better reflect the dynamical behaviors of coupled complex networks whose information transmission process is affected by a noisy environment (e.g., Internet-based control systems). By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem. By employing a combination of the linear matrix inequality (LMI) techniques, the free-weighting matrix method and stochastic analysis theories, several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays. The criteria derived are characterized in terms of LMIs whose solution can be solved by utilizing the standard numerical software. A simulation example is presented to show the effectiveness and applicability of the proposed results.

495 citations

Journal ArticleDOI
01 Oct 2008
TL;DR: A synchronization problem is investigated for an array of coupled complex discrete-time networks with the simultaneous presence of both the discrete and distributed time delays and an LMI approach is developed for the state estimation problem.
Abstract: In this paper, a synchronization problem is investigated for an array of coupled complex discrete-time networks with the simultaneous presence of both the discrete and distributed time delays. The complex networks addressed which include neural and social networks as special cases are quite general. Rather than the commonly used Lipschitz-type function, a more general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. The distributed infinite time delays in the discrete-time domain are first defined. By utilizing a novel Lyapunov-Krasovskii functional and the Kronecker product, it is shown that the addressed discrete-time complex network with distributed delays is synchronized if certain linear matrix inequalities (LMIs) are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, for all admissible discrete and distributed delays, the dynamics of the estimation error is guaranteed to be globally asymptotically stable. Again, an LMI approach is developed for the state estimation problem. Two simulation examples are provided to show the usefulness of the proposed global synchronization and state estimation conditions. It is worth pointing out that our main results are valid even if the nominal subsystems within the network are unstable.

486 citations

Journal ArticleDOI
TL;DR: It is shown that the addressed stochastic Cohen-Grossberg neural networks with mixed delays are globally asymptotically stable in the mean square if two LMIs are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox.
Abstract: In this letter, the global asymptotic stability analysis problem is considered for a class of stochastic Cohen-Grossberg neural networks with mixed time delays, which consist of both the discrete and distributed time delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, a linear matrix inequality (LMI) approach is developed to derive several sufficient conditions guaranteeing the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the addressed stochastic Cohen-Grossberg neural networks with mixed delays are globally asymptotically stable in the mean square if two LMIs are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also pointed out that the main results comprise some existing results as special cases. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria

433 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the global asymptotic stability analysis problem for a class of neural networks with discrete and distributed time-delays and derived sufficient conditions for the neural networks to be globally stable in terms of a linear matrix inequality.

410 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany.

2,404 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006 and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Abstract: This paper reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles, and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations.

1,814 citations

Posted Content
TL;DR: In this paper, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006, and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Abstract: This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations.

1,655 citations

Book ChapterDOI
31 Oct 2006

1,424 citations

01 Jan 2005
TL;DR: In this paper, a number of quantized feedback design problems for linear systems were studied and the authors showed that the classical sector bound approach is non-conservative for studying these design problems.
Abstract: This paper studies a number of quantized feedback design problems for linear systems. We consider the case where quantizers are static (memoryless). The common aim of these design problems is to stabilize the given system or to achieve certain performance with the coarsest quantization density. Our main discovery is that the classical sector bound approach is nonconservative for studying these design problems. Consequently, we are able to convert many quantized feedback design problems to well-known robust control problems with sector bound uncertainties. In particular, we derive the coarsest quantization densities for stabilization for multiple-input-multiple-output systems in both state feedback and output feedback cases; and we also derive conditions for quantized feedback control for quadratic cost and H/sub /spl infin// performances.

1,292 citations