scispace - formally typeset
Search or ask a question
Author

Yury Gogotsi

Other affiliations: Qatar Airways, Clemson University, Qatar Foundation  ...read more
Bio: Yury Gogotsi is an academic researcher from Drexel University. The author has contributed to research in topics: MXenes & Carbon. The author has an hindex of 171, co-authored 956 publications receiving 144520 citations. Previous affiliations of Yury Gogotsi include Qatar Airways & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of Ti3CN content in the epoxy system on the thermal degradation behavior and micromechanical properties were investigated, and the extent of intercalation of epoxy between MXene flakes was analyzed by transmission electron microscopy.
Abstract: MXenes have attracted much attention as fillers in polymer composites due to their superior electrical and mechanical properties making them ideal for creating multifunctional composites. In this work, Ti3CN-epoxy composites were prepared via solvent processing and cured with amine-based hardener. The effects of Ti3CN content in the epoxy system on the thermal degradation behavior and micromechanical properties were investigated. The extent of intercalation of epoxy between MXene flakes was analyzed by transmission electron microscopy. Nanoindentation analysis of MXene-epoxy composites exhibited improved mechanical properties with increasing MXene content with highest increase to 12.8 GPa Young's modulus for 90 wt% Ti3CN. An increase in creep resistance of composites was observed at maximum loading of Ti3CN by 46% compared to neat epoxy.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the interfacial structure and electrochemical performance of dicationic ionic liquids (DILs) were investigated using classical molecular dynamics simulation for comparison with their monocationic counterparts.
Abstract: The electrical double layer (EDL) structure formed by ions at a charged surface, which is the key to determining the performance of supercapacitors, has been extensively studied for many monocationic ionic liquids (MILs). However, it is not known what effect replacing MILs with dicationic ionic liquids (DILs) will have on the EDL structure. In this work, the interfacial structure and electrochemical performance of DILs [Cn(mim)2](BF4)2 (n = 3, 6, 9) and [C6(mim)2](Tf2N)2 were investigated using classical molecular dynamics (MD) simulation for comparison with their monocationic counterparts. Different EDL structures formed by DILs and MILs near an onion-like carbon (OLC) electrode were observed. The interfacial orientation of the imidazolium plane in dications was verified to be similar to that of monocations. Moreover, the dissimilar sizes of the cation/anion and the specific ion adsorption on OLC were found to contribute to the distinctive shape of the differential capacitance–electric potential (C–V) cu...

51 citations

Journal ArticleDOI
TL;DR: In this paper, pure BN coatings have been synthesized on the surface of SiC powders and fibers by a novel carbothermal nitridation method, which is simple, cost-effective, and less toxic due to the use of H3BO3 and NH3 as precursors at atmospheric pressure compared with most commonly used chemical vapor deposition (CVD) methods.
Abstract: Pure BN coatings have been synthesized on the surface of SiC powders and fibers by a novel carbothermal nitridation method. Three stages are involved in the process: first, formation of a carbon layer on the SiC by the extraction of Si with chlorine; second, infiltration of the resulting nanoporous carbide-derived carbon (CDC) coating by a saturated boric acid solution; and finally, nitridation in ammonia at atmospheric pressure to produce the pure BN coating. X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) were used to characterize the phase, elemental composition, and surface morphology of the coatings. The intermediate carbon layer acts as a template for BN growth, facilitates the formation of BN, and prevents the degradation of SiC fibers during nitridation. The whole process is simple, cost-effective, and less toxic due to the use of H3BO3 and NH3 as precursors at atmospheric pressure compared with most commonly used chemical vapor deposition (CVD) methods. Uniform BN coatings obtained by this method prevent the bridging of fibers in the tow. The coating of powders is possible, which cannot be achieved by conventional CVD methods.

51 citations

Journal ArticleDOI
TL;DR: In this paper, nanoindentation of the Tin+1CnTx MXenes was studied via atomistic simulations utilizing a parametrization of ReaxFF interatomic potential, to understand the influence of point defects.

51 citations

Journal ArticleDOI
TL;DR: Two-dimensional transition metal carbides and/or nitrides (MXenes) have shown promise in developing electrochemical storage of metal ions within conductive galleries due to redox reactions with transition metal atoms, but effect of surface chemistry on electrochemicalstorage of sodium ions within MXene interlayers is investigated.

51 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations